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1. Introduction 
1.1 A changing science
 An ecologist stands under an enormous hemlock tree deep in the New England forest. She 
marks down the number of a tag on the tree on a sheet of paper, measures its girth, and notes its 
health and what plants are growing around it. After examining several dozen more trees, she will 
put her notes in a filing cabinet with similar ones from past years, and eventually the ecologist or 
one of her students will analyze the collected data and publish their conclusions.
 A few yards from the hemlock stands an 80-foot tall scaffolding structure, steadied by 
guy wires. The sensors this eddy-flux tower holds above the forest canopy take measurements of 
environmental variables such as atmospheric turbulence, carbon dioxide flux, photosynthetically 
active radiation, and wind speed every few milliseconds, year-round, then wirelessly send them 
to a database accessible by anyone with an Internet connection. Over the next few years, teams 
of researchers from several universities across the country will download the data, integrate it 
with measurements from stations located in other ecosystems, perform analyses, and potentially 
publish many papers on different aspects of the collected data.
 The ecologist represents a traditional kind of science that, while essential, is rapidly being 
eclipsed by the advancement of technology. New data collection capabilities, such as sensor 
networks, combined with powerful computational techniques make it possible for new, large-
scale questions to be investigated in disciplines such as particle physics, systems biology, climate 
change, and ecosystem ecology. At the same time, the scale of the datasets involved creates 
equally large data management challenges. Many of these issues rest simply on the fact that it 
can be difficult to keep track of what has been done with any subset or to the whole of any given 
scientific dataset. A single dataset used in the new information-intensive sciences is no longer a 
physical folder of plot inventory sheets or even digital pages in a spreadsheet, but often is a 
complex synthetic product of several initial sets. Data frequently undergoes quality control and 
other preliminary computational steps before analysis is even begun. A lack of knowledge about 
these procedures can further complicate data management and analysis in a variety of ways. 
Metadata about the origins and subsequent transformations of data is called provenance, and its 
production and use is an important challenge facing today's scientific community.
 The term "provenance" itself is defined as origin or source, often with the more specific 
connotation of the history of a physical object. In the scientific context, taxonomic studies are 
informed by knowledge of the origin of individual specimens. In paleontological research, for 
example, much of the value of a fossilized specimen is provided by its accompanying 
provenance information. "Origin" provenance, for a fossil, may include information about where 
and when it was found and by whom [1].
 An additional perspective is gained by looking at what can be termed "derivation" 
provenance: the record of what has happened to the specimen since discovery, such as taxonomic 
reclassifications, transfers of ownership, and any damage, preparation, or other modifications. 
This collected knowledge makes up a large part of the specimen's value, providing the possibility  
of recovering additional specimens or making comparisons between specimens from different 
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locations, as well as verifying scientific significance by identifying fakes or illegal trafficking. In 
the case of fossils, a lack of such provenance information may render the specimen essentially 
unusable as part of a scientific collection (although it may retain value in a non-research 
educational context) [1-3]. In a broader application to scientific research, the value of origin and 
derivation provenance applies not only to physical specimens, but any object of inquiry, 
including pure data.

1.2 Why provenance?
 One of the major reasons provenance information is essential to scientific data 
management, made clear by the hemlock research scenario at the beginning of this paper, is 
simply that data collection and processing methods do change over time. Whether due to 
advancements in methods or simply disciplinary and researcher preference, such changes may 
introduce inhomogeneities that can lead to incorrect analyses and incompatibilities between data 
processed at different times. Thus, the technological advances that make large-scale data 
collection possible are themselves reflected in the final data products of some long-term datasets. 
 One example of a biased data product resulting from a change in data processing comes 
from the domain of climate science, as reported by Karl et al. [4]. Climatologists are interested in 
tracking the area of polar snow cover as an indirect measurement of changes in global 
temperatures and hydrological patterns, which may in turn help predict the effects of future 
changes in environmental conditions on the global climate system. Satellite imagery has 
provided the means to conduct measurement of snow cover in vast, previously inaccessible polar 
regions. Data-reduction algorithms are used to produce a time series of annual average snow 
cover, relying on monthly averages of snow cover for each region. In 1981, a change in the 
primary method for calculating these monthly averages introduced a bias into the data, resulting 
in erroneous increases in estimated snow cover. The results were subsequently published in 
influential international climate change policy recommendations such as the reports of the 
Intergovernmental Panel on Climate Change. Karl et al. noted that problems due to such changes 
in processing algorithms would be likely only to increase as climate science relied more on such 
methods, and as traditional manual measurement systems were replaced with electronic systems. 
Therefore, they advocated for the parallel development of a standard methodology to track these 
changes. With the institutionalization of provenance capture, the consequences of such changes 
in data-processing can be made transparent, and older data can be more easily re-processed with 
new methods to produce homogeneous datasets. Nearly two decades later, the same issues are 
only compounded with the complexity of current scientific sensor systems. The same argument 
can be applied to the operational problems inevitably encountered with the sensors themselves. 
Outright sensor failure may be relatively easy to detect, but more subtle malfunctioning such as a 
slow drift in accuracy may be more difficult. In that case, provenance data may be essential on 
several fronts: it allows for identification of affected data values that then may be adjusted or 
excluded, and frequent review of the intermediate data values may allow for detection of sensor 
drift itself.
 Another key issue is that as data collection and analysis become more complex, they also 
tend to become distributed. The scientists responsible for producing the satellite snow cover data, 
for example, were from different institutions than the meteorologists who subsequently used that 
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data to make conclusions about the snow cover's extent. Thus, a divide can be created between 
data producers and data consumers. Imagine that the forest ecologist referred to earlier moved 
from studying hemlocks to a new project, and a colleague inherited her filing cabinet of data and 
notes along with the results of some initial quality control and statistical tests. The colleague 
would use the notes (and perhaps correspondence with the original researcher) to decipher what 
had already been done with the data in order to accurately continue the analysis. She would then 
also be able to decide what steps to repeat if she found errors or disagreed with the original 
procedures, and to reduce her workload by identifying subsets that might not need revision. The 
same type of transfer occurs in information-intensive large-scale science, but is likely to be on a 
more indirect basis. Data producers, such as the scientists in charge of the eddy flux tower, are 
more frequently making their data accessible on the Internet to facilitate collaborative research. 
Funding agencies, too, are moving toward requiring publicly released data to encourage 
transparency. The consumer, therefore, can potentially access large datasets without much 
contact with the producers, and without full knowledge of how the data were produced. Access 
to provenance information can alleviate concerns about the reliability of conclusions based on 
such shared data.
 One aspect of data reliability, and a major goal of increasing access to data, is the 
reproducibility of experiments. This is one of the essential components of good science: a 
hypothesis is only truly considered to be supported by the results of an experiment if it can be 
shown that an independent reproduction of the experiment will produce the same results. From 
the point of view of the traditional scientist, it may be tempting to think that the widespread use 
of computers to automate scientific data-management tasks will make reproducibility easier 
because, at least theoretically, the same computation performed on the same data inputs should 
execute identically every time. However, this is highly dependent on how well those 
computational operations and inputs are recorded, and provenance capture is currently far from 
standard in scientific computation. Also, in addition to the previously discussed issues of a 
producer-consumer gap, computer-based data manipulations are far from unified. Software used 
for scientific computing ranges from ad-hoc programs written by individual researchers to 
spreadsheets, statistical packages, large proprietary or open-source software suites, and web-
based services. Additionally, many different techniques may be used for a single dataset. 
Coordinating the use of multiple software products increases the difficulty of capturing 
provenance. There are also issues of how best to store and access metadata, especially from 
multiple sources. Producing provenance information and storing it in a useful way, therefore, is a 
valid and pressing concern from the perspective of both experimental science and the scientific 
software that supports it.
 Other types of synthetic information products have similar issues with reliability and user 
confidence, and have developed various solutions that are illustrative. Distributed and 
community-based online projects involving many participants, in particular, face issues of user 
confidence. The Distributed Proofreaders component of Project Gutenberg [5] is a web-based 
effort to digitize and provide open access to literary works in the public domain. Each original 
paper volume undergoes a digitization and quality-control process analogous to the production of 
scientific data sets. Optical character recognition (OCR) software provides an automated method 
for digitizing texts, but the reliability of the program's output is limited by the clarity of the 
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original print. The OCR output is corrected by a series of volunteer proofreaders ranked by 
experience, with more highly ranked participants checking the work of newer ones, and is 
divided into sections so multiple teams can work on the text at once. The entire volume is then 
reassembled and uploaded to an Internet archive. The results of scholarly analysis of historically 
important literary works may depend on the accurate reproduction of exact text, so the 
participant responsible for each activity is recorded throughout this process to ensure the ability 
to trace issues. It is also simple to then compare the final data product (the proofread text) to the 
original (the scanned text page), although this option is neither available to nor required by the 
vast majority of users. Another project where such comparisons are integrated directly into the 
data product is the online encyclopedia Wikipedia, which has both the strength and weakness of 
granting universal permission to edit any content on the website. A "History" tab allows readers 
(that is, data consumers) to view all previous changes made to the information, making it easy to 
identify malicious or erroneous additions and, just as importantly, "roll back" to an earlier edit. 
Online efforts like these illustrate an additional facet of provenance capture: in either case, the 
information would be unlikely to be recorded if it was left to the participants or if it interfered in 
any way with the process. To be truly useful and comprehensive, the recording of this 
information must be both automatic and unobtrusive.

1.3 Defining and capturing provenance
 A first step in capturing useful provenance information is to rigorously define it in terms 
of particular types of information that can be captured from the execution of scientific data 
processes. As the term is used here, a scientific data process is a specified sequence of steps or 
tasks that either takes in data inputs or produces them, performs manipulations or other actions, 
and subsequently produces some form of data product. Manipulations performed on data may 
occur at the level of the dataset (merging sets from more than one source, for example) or 
individual data value (such as taking a value as input to calculate a subsequently derived value). 
The most basic form of output would be a simple transformation of the input; however, as 
analysis and data visualization software become ever more sophisticated, this output might 
extend to complex data products such as rendered and possibly interactive animations or other 
visualizations. What is considered to be a complete process is largely a matter of scale: on one 
extreme, it could include the entire experimental scientific procedure itself, from hypothesis to a 
conclusion based on collected and analyzed data. Most approaches to defining and automating 
such processes, however, focus on either the most computationally intensive or operationally 
complex segments of the procedure. Here, we are more concerned with processes involving 
some subset of actions performed on the data itself; however, I believe that it is important to 
keep in mind that data management and analysis generally do occur within the context of larger 
scientific inquiries.
 The most straightforward form of a specification for such a scientific process would be a 
simple, sequential "laundry list" of tasks. Provenance, in that case, would be a corresponding list 
of what tasks were actually performed: each time an action was executed an entry would be 
made recording the fact. This could perhaps be extended with a record of intermediate data 
products and descriptions of any problems encountered in following the list. But this approach 
provides little support for describing the complexity of real scientific processes, which may 
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include branching decision trees, parallel execution of sub-processes, and other nonlinear 
components. The motivating example for this research has been the implementation of a 
hydrological sensor network at the Harvard Forest ecological research site in Petersham, 
Massachusetts, with the goal of producing a detailed water budget of small forested watersheds. 
This network includes several types of instrumentation such as stream flow and precipitation 
sensors, and the aforementioned eddy-flux tower. Each type of sensor produces data that must 
undergo a variety of quality control and preliminary processing procedures. These procedures 
must be able to handle a variety of situations where data is missing, derived from multiple 
sources, or have unexpected values. They also often include complex handling of multiple sub-
processes that themselves must include such data handling. The dataset is ultimately made 
publicly available on the internet [Fig. 1].

 The methods used for capturing provenance, then, must also be able to handle such 
complexity. In addition, even simple, linear processes raises questions of exactly what metadata 
is important to record, which could include information such as timestamps, metadata from 
software and external computational services, and researcher annotations. A more complete 
concept of provenance would provide further information about why certain paths were taken 
and the resulting relationships between intermediate data products and computational actions. 
The title of this research project is based on the idea that the execution of scientific processes 

Figure 1. Harvard Forest Hydrological Sensor Network
 Data is collected from three types of hydrological sensors, processed, and made 
available to data consumers.
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such as hydrological data processing, and their associated provenance, can be rigorously defined 
using software engineering concepts.

2. Related works
2.1 Workflows
 A number of surveys exist that provide an overview of the many approaches to capturing 
and accessing provenance that have been investigated [6-10]; here I will outline a subset of 
approaches to introduce some of the issues encountered in the course of this research project. In 
recent years, interest in provenance in scientific computation has resulted in a research 
community approaching the issue from a variety of perspectives, such as those addressing 
domain-specific problems or particular parts of data management and analysis.
 Attendant to the advantages of advancing scientific technology is an increase in the 
introduction of errors in the sequence of events and details followed in such tasks. This problem 
only increases when automated or semi-automated tasks are performed by a network of multiple 
researchers, computer services, and other agents. To address this issue, a number of projects have 
developed software for the creation and execution of scientific workflows. At the simplest level, 
a workflow may simply be the aforementioned "to-do list" of tasks to be performed, but many 
scientific workflow software tools provide the ability to execute computational tasks involving 
complex controls of data. Many of the designers of such software also recognize the importance 
of providing additional tools to capture data provenance information as the workflows are 
executed. These projects provide insight to some of the inherent issues encountered in capturing 
and using provenance information.
 One such workflow program is the Kepler system, which demonstrates the dataflow-
based, visual representation of computational tasks employed by many workflow systems [Fig. 
2] [11]. The addition of data provenance capture to Kepler has been approached in several ways. 
The framework described by Altintas et al. [12] emphasizes the potential to not only capture 
provenance such as data inputs and intermediate values, but to track the evolution of workflows 
themselves as a tool for debugging and improvements in workflow design. Additionally, when a 
rerun of the workflow is required due to changed input parameters, it provides a basis for using 
analysis of provenance information to save execution time by only rerunning required portions of 
the workflow. Another project, pPod, is based on the specific needs of the biological systematics 

Figure 2. Kepler Workflow Diagram
 This diagram illustrates the workflow approach to defining scientific processes.
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community using Kepler to support a large-scale project to reconstruct organismal phylogenies 
[13]. pPod captures provenance data through the addition of tokens to a stream, where each 
token represents a provenance-related event produced by an actor. The system then uses the 
collection of tokens to construct provenance graphs representing the relationships between actors 
and the dependencies between data items. It is a relatively common approach to store data 
provenance information in a directed acyclic graph (DAG) representing the relationships 
between some combination of information about and dependencies within dataflow, often with 
additional information about the computational entities that use and transform data. 
 These and the similar dependency graphs constructed by many other provenance-
inclusive workflow systems often make some attempt to include relevant information from each 
computational step beyond input and output objects. An issue that then arises is the problem of 
capturing information from "black boxes" that might not provide sufficient information about 
themselves. The ability to take advantage of remote computational services becomes more 
important as in-silico experiments increase in complexity. At the same time, service-based 
processing presents problems such as, for example, an inability to query the service for relevant 
information like the current state. A model developed for a different workflow system, Taverna, 
approaches this by attaching annotations to provenance captured from whole saved workflow 
instances [14].
 Another issue inherent in science involving large quantities of data is how to visualize 
and understand large-scale trends contained in the data. It can be difficult if not impossible to 
derive overall meaning by simply viewing large spreadsheets of data; instead, scientists view 
data in ways that range from simple graphs to complex rendered animations and other 
interactive, computationally intensive visualizations. The workflow system VisTrails [7, 15, 16] 
is designed specifically to handle data integration for visualization. It is novel for being one of 
the relatively few workflow systems to integrate provenance support as part of its initial design, 
as well as for the level of abstraction provided both in the workflow and the provenance data.
 The first International Provenance and Annotation Workshop in 2006 (IPAW '06) 
provided an opportunity for communication among researchers from diverse projects, including 
many of those mentioned here. Out of this meeting, the First Provenance Challenge was 
developed to provide the community with an opportunity to compare the systems used and the 
associated approaches to provenance. The participating teams demonstrated their ability to run 
(or simulate) a common workflow and capture some level of provenance information [17, 18].
 Although much development has gone into workflow systems such as those discussed 
here, these programs for the most part approach provenance through the development of 
extensions and not as a core design feature. More generally, it has become readily apparent that 
the provenance community lacks formal representations for the definition of dataset production 
and processing, especially in terms of handling complexity. In many cases, the data-flow based 
workflow diagrams are not sufficient for reproducibility and other concerns of data producers, 
and provenance trails pose difficulties for (potentially different) data consumers. 
 A different and more robust way of providing a formal representation of scientific 
processes has been developed by an interdisciplinary team of computer scientists and ecologists, 
drawing both on software engineering concepts and previous ecological metadata-definition 
techniques. The analytic web concept brings together a workflow-style data-flow diagram with 
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formal definitions of the potential process (a process definition graph, or PDG) and the process 
as actually executed (data-derivation graph, or DDG).

3. A software engineering approach: process programming and the Analytic Web
3.1 Process programming
 Although scientific workflows appear to be a fairly comprehensive solution to scientific 
process execution, they have a number of characteristics that tend to present challenges to 
provenance capture. However, workflows are not the only conceptual approach to the 
specification and automation of scientific tasks. A different, innovative concept is to define and 
describe a process using software engineering ideas. 
  The idea of process programming was introduced more than two decades ago in the 
domain of software engineering by Lee Osterweil, who in the title of a paper presented at the 9th 
International Conference on Software Engineering in 1987 [19] declared that "Software 
processes are software too". That is, the processes that are performed during the development 
and construction of a software product can themselves be described using software engineering 
concepts. This kind of meta-description allows engineers to improve software development by 
creating robust, formal definitions of the procedures they follow, which both decreases the 
probability of procedural errors and provides greater access to overall process knowledge for 
individual workers. What distinguishes this concept from workflows most, however, is that this 
kind of thinking confers the ability to take advantage of software engineering concepts that 
provide a more robust semantic environment for defining processes.
 Although software engineering may not intuitively appear to be connected to the 
management of scientific datasets, there are two extensions to this concept that make it more 
broadly applicable. First, Osterweil and his colleagues envisioned the development of a 
compilable programming language that would facilitate the writing and execution of process 
programs. Second, it was recognized that this concept translates to a more general idea of 
process beyond the immediate domain of those who developed the idea of process programming. 
If the development of software products can be described through such methods, so can the 
similar development of other products, and ultimately, any analogous process that consists of a 
structured collection of tasks. The hydrological data network provides one example of the utility 
of this thinking in the form of exception handling. Many conventional programming languages 
support a mechanism by which the majority of cases of, for example, input data are processed in 
the normal course of the program. A case that would, for example, invalidate assumptions made 
in the rest of the program, however, is passed to a handler that can safely take care of the 
exceptional case before returning control to the program. This provides a more robust solution 
than a simple "if-then" statement as is available in most workflow diagrams, as well as explicitly 
distinguishing between normal and exceptional cases. An example would be assigning a negative 
value to a variable that is expected to be positive, such as hydrological information about streams 
that are physically unable to contain negative amounts of water. A negative value, in this case, 
would need to be substituted in some way in order to be processed, and may indicate a sensor 
problem that would trigger some kind of corrective action. 
 Coupled with the development of an executable programming language in which to write 
process programs, this idea gains applicability to a wide range of domains that could benefit 
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from rigorous definition of tasks. It is intuitive that such a definition could then lead to the 
rigorous capture and storage of provenance information produced by such tasks.

3.2 Little-JIL
 A current implementation of this concept is in the form of a language called Little-JiIL, 
developed at the LASER lab at the University of Massachusetts, Amherst [20]. A full description 
of the language is available elsewhere [21], but a short overview is a necessary reference for 
further discussion of this project. Little-JIL is best described as a coordination language, 
visualizing processes in terms of items of work called steps that are assigned to entities that are 
capable of doing work, known as agents. The capabilities of agents can range from a "dummy 
agent" that simply starts and completes steps, to the more autonomous and complex decision-
making abilities of a piece of software or a human researcher. A step is represented by an icon 
that displays its name and other information such as control flow, and are connected into a graph 
that represents the entire process. Steps 
may represent and control a single 
action, or may be composed of a 
hierarchical series of sub-steps that 
must be completed before the ancestral 
step completes. A step in which the 
assigned agent "does work" directly 
without further control input from the 
process is called a leaf step and has no 
children. Most kinds of steps take in 
input parameters and produce output in 
the form of objects called artifacts that 
can be passed throughout a process. 
Processes, as composed of steps and 
the connections between them, are 
created and edited in a graphical 
environment [Fig. 3]. 

 In the context of scientific data management, Little-JIL provides the ability to coordinate 
the activities of agents used in these kinds of processes, such as multiple computer programs, 
remote data sources, and off-line actions or decisions by human researchers. And as discussed, 
one of the main strengths of Little-JIL in the scientific context is the ability to apply 
programming concepts such as exception handlers and iterative loops to the processing of 
scientific data.

3.3 The Analytic Web 
While the process programming approach, with the use of Little-JIL, can provide a more 
rigorous process definition than that achieved through a workflow diagram, more documentation 
is required to fully describe an executed process [22-24]. Briefly defined, an Analytic Web is a 
collection of three graphs that together describe a process and its execution [25]. Like process 

Figure 3. A simple Little-JIL process
 This process consists of three steps: a root step 
with two leaf steps as children. The arrow badge on 
the root step indicates that the children execute 
sequentially from left to right.
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programming itself, the Analytic Web concept was originally developed for the definition of 
software engineering processes. In the context of this research, the concept has evolved to serve 
both the needs of the ecologists with whom this project has been developed in collaboration, and 
the primary goal of investigating provenance capture.

i. DFG
 The first graph of an Analytic Web, the Data Flow graph (DFG), represents the process at 
a high level in the same form as the data-flow diagrams central to many scientific workflow 
programs. This has the advantage of being intuitive to scientific users who either use workflow 
programs or are otherwise familiar with defining processes in similar forms, and provides a clear 
visual representation of the process. However, the DFG is less semantically powerful than the 
PDG, as it lacks coordination features (for example, exception handling) that provide precise 
definitions of the process [26]. It is possible that including the DFG to some degree in the current 
incarnation of the Analytic Web may prove useful in proposed future projects to translate 
scientific tasks into Little-JIL, or to integrate Little-JIL with established workflow tools. 

ii. PDG
 As has been discussed, the usefulness of provenance information is correlated with the 
precision with which the process itself is defined. This process definition can in of itself be 
thought of as useful provenance information in the form of prospective provenance. In other 
words, the definition of all possible all execution paths restricts the captured provenance to a 
subset of a larger known set of possible paths. In the Analytic Web concept, this is represented by 
a Process Definition Graph (PDG), which corresponds to the Little-JIL process diagram. 

iii. DDG
 The natural counterpart to the prospective provenance encoded in a PDG is retrospective 
provenance, the execution trace of the process as it actually occurred. This is represented by the 
third component of an Analytic Web, the Data (or Dataset) Derivation Graph (DDG). A DDG 
stores provenance information in a directed acyclic graph (DAG) consisting of nodes containing 
the intermediate data values (Data Instance Nodes, or DINs) and the computational elements that 
produce them (Step Instance Nodes, or SINs), and arrows that represent derivation relationships 
between them (it should be noted that the current convention is for the arrows to point up from a 
node to its parent, reflecting the retrospective nature of the trace). The term "derivation" as it 
used here deserves defining, as the derivation of one value from another forms a central part of 
this conceptualization of provenance. As defined by Merriam-Webster, "to derive" is to "take, 
receive, or obtain, esp. from a specified source". This is trivially true, but lacks any deeper 
explanation of the possibly manipulative relationship between the source and the object being 
received. The dictionary definition of "derivation" is somewhat more useful, evoking a logical 
connotation as a "sequence of statements showing that a result is a necessary consequence of 
previously accepted statements". In the context of data objects, however, what does it mean to be 
a "necessary consequence"? It may be of use to consider a simple process in which an initial data 
value (data object A) is passed as input to some computational step (step 1), which returns a new 
value as output (data object B). Therefore,
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 - B is derived from A.
There are at least two ways to think about what actually happened during the process:
 - A triggered the step that produced B (which can be taken as either "the presence of A 
triggered the execution of step 1, which produced B" or "the creation of A by a prior step 
triggered the execution of step 1, which produced B").
 - the production of B is the result of a manipulation performed on A. Or, A is modified in 
a specified way (by the step) to produce B.
 Taken together, these views indicate that this modification plus the original value, within 
the defined structure of the process, creates the derived value. This relationship is denoted in the 
DDG as an arrow pointing from B up to the source of the modification (the step), and from there 
to A. If this seems to be a too-detailed a discussion of an apparently simple concept, it is because 
exploring the concept to this level is necessary for resolving questions of how to fit different 
elements into a DDG. This definition also has a couple of other important consequences. First, 
both pieces of this relationship (the modification and the value) can theoretically be quantified or 
otherwise defined, stored, and reexamined. When scaled to the level of a dataset, this has the 
desired result of a complete trace of the process as executed. Second, when the derivation 
relationship is defined in this way, it reinforces reproducibility and opens the possibility of 
eliding certain parts of the execution trace, because the relevant pieces can be "re-derived". This 
may be helpful for storage or visualization issues.
 It should be noted that the modification may be the same as no action if the output value 
is, for whatever reason, equivalent to the input. However, this still represents a successfully 
executed computational element with a result (or, in Little-JIL terms, a successfully completed 
step), and therefore the definition of derivation still holds for this case. This will be significant 
for future development of precisely what elements should be included in a DDG. Further 
discussion of the current state of the Analytic Web, and of DDGs in particular, requires a more 
complete example introducing the complexity of real-world processes.

4.0 Motivating example and experience in creating a DDG
4.1 Description of study system
 As previously mentioned, the motivating example for this research is a proposed 
hydrological sensor network at Harvard Forest, which involves tracking the inputs, outputs, and 
internal activity of water in a small forested watershed to gain insight into how variations in 
environmental conditions affect hydrology. Producing a detailed understanding of water budgets 
has previously been made difficult because of the scale of measurements needed to account for 
subtle sources of water flux, especially atmosphere-forest water exchange (evapotranspiration), 
which is now made possible by the eddy covariance method. The physical network consists of an 
array of scientific instrumentation measuring a range of hydrological variables. Data is 
communicated to an ecologist's computer and undergoes quality control and other initial 
processing. Final datasets are uploaded to Harvard Forest's online data archive [27]. The initial 
network is composed of three major sensor installations: a meteorological station measures 
precipitation (P), an instrumentation tower takes canopy-level evapotranspiration measurements 
(ET), and a series of gages measure stream discharge (Q). These environmental variables are 
related with the equation P - ET - Q = dS, where dS is a measurement of the total change in 
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water stored in watershed components such as groundwater and vegetation.
 The current research was most closely focused on using data processing from the stream-
flow sensors as an initial example process. The data is derived from weirs installed on Big and 
Little Nelson Brooks, the parallel outlet streams of the Black Gum Swamp wetland (a second set 
of gages in the form of pipes (culverts) are installed on another stream, Bigelow Brook, above 
and below a beaver swamp. The pipes and weirs operate on the same principles, but installation 
decisions depend on the hydrological and physical characteristics of the stream banks.) The weirs 
consist of a reinforced dam with a rectangular spillway and a V-shaped notch of a specified size 
and shape.  A sensor located in the catchment area behind the weir measures water pressure, 
which can then be converted to flow with a linear equation relating pressure to area using the 
known area of the notch. At the time of this research, the data was stored in an onsite data logger 
and downloaded to a portable device at predetermined intervals, although a local wireless 
network was under construction to allow near-real-time data streaming from the data logger for 
processing and uploading to the internet.
 Processing consists of several sequential steps for quality control and transformation of 
initial readings into stream discharge measurements. As discussed earlier, one of the issues 
associated with this system in particular, and such networks in general, is detection of and 
adjustment for sensor malfunction. The data is range-checked to provide a broad determination 
of sensor function at the level of individual values, then adjusted by a specified equation for 
known sensor drift. The final stream-flow data product is then calculated from this adjusted 
value. A simple data flow diagram of this process is shown in Fig. 4.

 Some (hopefully large) percentage of data values will undergo this process as described, 
but there are a number of ways in which errors can occur and be corrected. Errors such as 

Figure 4. A data-flow representation of the stream process
 This graph represents the process as designed and followed by the 
ecologists responsible for the processing of hydrological data.
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missing data may be the result of intermittent equipment or transmission errors, or ongoing 
situations such as winter ice buildup. These errors may be corrected by various gap-filling or 
modeling approaches, such as substituting an average of several previous data values. The 
process for such corrections could easily be more complicated than the original; for simplicity, 
we filled in a value of zero for such errors. However errors are handled, it is important that it 
does not interfere with the subsequent processing of the remaining data.
 A second sub-process of the larger water budget system is the quality control and 
processing for the precipitation sensors. The data processing is similar to that of the stream 
sensors, except that two sensors take measurements in parallel. During processing, data is 
preferentially derived from the primary sensor unless errors are detected, in which case data is 
read from the second sensor dataset. If both sensors return unreliable data, the program accesses 
a remote service to obtain data from a nearby airport (a missing or gap-filled value is substituted 
if the airport is unable to provide a usable value). This decision makes the process both more 
complicated from a process programming perspective and more interesting from a provenance 
perspective.

4.2 Translation into an Analytic Web
 The data-management procedure for the Harvard Forest stream sensors was an 
appropriate first candidate for translation to an executable Little-JIl process for several reasons. 
The ecologists collaborating on the project were interested in an automated software solution as 
processing was done manually using spreadsheet software, which was error-prone and required a 
researcher time commitment. In addition, the process is fairly simple in that it is both short and 
essentially linear in the most common case, but still has the potential to exhibit interesting 
behavior depending on the results of computational elements such as the range check. The 
construction of this process illuminated some key challenges in the development of DDGs that 
capture complete and useful provenance information [Fig. 5]. The precipitation process adds the 
complexity of parallelism, and served to reproduce the procedure developed for creating a 
running Little-JIL process and DDG [Fig. 6].
 The Little-JIL diagram represents at once the description of the process, the software for 
coordinating its execution, and the PDG for provenance purposes. As such, there is a 
combination of elements included in the program for computational purposes (that is, the process 
as designed by the ecologists), those included to take advantage of a programming approach and 
facilitate the transition to and satisfy the constraints of the Little-Jil language, and those included 
to aid provenance capture.
 In addition to the use of exception handling as described earlier, the stream process PDG 
takes advantage of other Little-JIL features. One such element was the decision to make the 
Check Range step a post-requisite to the Read S step. That is, the step that controls the reading in 
of a sensor value (S) will not complete, and control will not pass to the next step (Adjust S), until 
the Check Range step has successfully executed. If Check Range fails, an exception handler 
interrupts the process to perform specified actions to correct the error, and the process resumes 
on the next data value. This behavior is one of the features of Little-Jil that makes the language 
appropriate for this type of process automation. However, this configuration is not easily drawn 
from the initial data flow diagram, which essentially treats each computational step as 
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equivalent. The difference here is that all other steps explicitly change the data object; for 
example, the Calc Q step takes in an adjusted sensor output data value (in the form of a 
SensorData object), performs a calculation, and produces a final discharge value (a QData 
object). The Check Range step, in contrast, can be thought of as not having an "output" in the 
same sense. Rather, the result of the evaluation of the passed-in value is an action: either the 
range check is passed and the process can be continued, or the check fails and an exception 
handler is triggered.
 There are several possible ways of representing this in the DDG produced by a process 
with this kind of step. One would be to simply not include the Check Range step because it does 
not fit into the "value plus modification" view of derivation. It was generally agreed, however, 
that being able to answer the question of whether the range check actually occurred is important 
to the ecologists who designed the process. Another solution, then, would be to create a third 
type of node, or include it as a special kind of annotation. Annotations are by definition extra 
information added to the graph, rather than an integral component; additional types of nodes add 
complexity and should not be considered lightly. The eventual result of this discussion was to 
include Check Range as a normal SIN, with the next step being linked both to Check Range and 
to the parent step that produces the output value.
 This discussion also led to the definition of three rules of DDG structure, extending the 
previous definition of a DDG as a DAG composed of Step Instance Nodes and Data Instance 
Nodes. These rules serve both as a guideline for the development of processes and as a check for 
the correct creation of DDGs from a process:

Figure 5. Stream flow PDG 
 The stream flow process as encoded in Little-JIL. Note the 
exception handlers (red) and Check Range as a requisite for Read S.
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1) A DDG always starts with a SIN.
 This rule is somewhat for the sake of consistency between DDGs, and to avoid chicken-
and-egg arguments of whether a process begins with input data or with an action performed on 
that data. I argue that a process may be defined as beginning with the production of data itself, 
and therefore have no inputs; furthermore, even a process with inputs must begin by somehow 
reading them into the process.
2) DINs must be preceded and succeeded by SINs (DINs can only link to SINs)
 Because arrows in a DDG represent derivation, derivation is the result of a modification 
on a value, and modifications can only be performed by steps, one data object in a process 
cannot be derived from another without the intervening execution of a step. 
3) SINS can be preceded and/or succeeded by either SINs or DINs
 This rule is most informed by the Check Range situation, where the completion of Read S 
and the beginning of the next step (or alternatively, the triggering of the exception handler) 
occurs without modification of the value passed to Check Range. This rule, therefore, also 
reinforces the solution to the Check Range question proposed above. A process could, in theory, 
consist only of steps such as Check Range, with the flow of control being modified by the value 
being passed to a step, but the value itself not being produced as output.

5. Java program
A second part of this project was the development of another form of DDG production 

Figure 6. Precipitation process PDG
 The precipitation process as encoded in Little-JIL. Note the 
parallelism at the step “Get Values”.
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mechanism, and a departure from the Analytic Web concept: a recreation of the process as a 
program written directly in Java rather than Little-JIL.  One of the justifications for a Java 
implementation of the program was to provide a way to refocus on the development of the DDG. 
The Java program executes exactly the same procedure as the Little-Jil stream process, and in a 
way represents the status of much small-scale scientific computing. As mentioned before, the 
stream sensor data was, at the time of this research, processed by data transformations in a 
spreadsheet. This kind of special-purpose data processing program is frequently written by 
researchers as an ad-hoc solution for the automation of tedious tasks, intended to address 
immediate concerns of decreasing error rates and the time needed for processing rather than 
larger-scale concerns of reproducibility and provenance. The program developed here, however, 
demonstrates that provenance can be captured and stored in a useful form such as a DDG even 
from these kinds of programs.
 The program reuses many of the same components from the Little-JIl process, which was 
aided by the fact that in the Juliette environment, Little-JIl agents are written in Java. Exception 
handling, for example, is an essential part of Java programming and therefore exception classes 
were transferred between the programs unchanged. The data parsing, input/output, and methods 
for actual data processing such as sensor adjustment were also copied verbatim. In the absence of 
Little-Jil's diagrammatic approach to control flow, a single driver class iterates through each data 
value read into the program and calls the appropriate data processing methods. Like the original, 
the Java program captures process metadata at the time of creation or modification of data 
objects, and at the time of execution for the method calls that replaces step instances.  Nodes are 
created and linked to the DDG by a single "addMethod" or "addData" method call for adding 
computational elements (in the form of strings representing called method names, analogous to 
step instances) or data objects, respectively. The potential pitfalls of this type of program mostly 
lie in the fact that, although they are designed to be as minimally intrusive to the program as 
possible, the inclusion of the method calls to capture and store DDG elements are not 
syntactically enforced. This violates the two principles discussed at the beginning of this paper, 
that in order to be effective, provenance capture should be both automatic and unobtrusive. 
Additionally, the DDG-creation code has various levels of domain-specificity, with the result that 
extending this program to other processes may require a certain amount of retrofitting. Aside 
from these issues, the program produces both valid data output and a DDG that follows the 
previously discussed format. The program would also be fairly easily extended to implement the 
precipitation process as well.

6. Conclusion
 There is much further development needed on this project, especially in the details of the 
construction and storage of DDGs. Development of the storage of DDG information has, until 
now, taken a secondary position to practical concerns of how to capture data items and 
theoretical concerns of what data to include and leave out of the DDG. The current format is to 
output the information stored in a DDG as a hierarchical XML document. However, this has 
always been intended as a temporary measure to facilitate the production of easily visualizable 
experimental DDGs, not as a permanent storage solution. One issue is that because the DDG 
may include many intermediate values for every final value, and may include an arbitrary 
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amount of information collected from steps, it has the potential of being many times the size of 
the initial or final datasets. This raises not only questions of storage but of whether it is practical 
to avoid storing re-derivable parts of the DDG at all. It also may make sense to develop what 
goes into a DDG and how it's stored concurrently, because the one necessarily influences the 
other. Visualization is a related concern, especially whether abstraction is practical to hide 
unnecessary (or sensitive) details from some viewers while displaying more relevant 
information.
 Addressing these concerns is increasingly important because data management will only 
get more complex as science continues to become more data-intensive. For example, the 
National Science Foundation (NSF) recently announced new data sharing requirements for 
research funded by the agency. Instead of simply requiring that data be made publicly available 
at some point, the new policies require a comprehensive, peer-reviewed data-management plan 
to be submitted with  grant applications and research proposals [28]. Increasing collaboration 
between scientists is one of the stated goals of such policies; however, in order to be shared 
effectively researchers need data to be accompanied by compatible information about the data's 
origins.
 On a personal level, my experience talking to researchers across many scientific domains 
and in fields such as engineering and medicine has left me convinced that nearly every member 
of a data-intensive discipline has experienced some instance in which easily available 
provenance information would improve their ability to use data. The development of provenance 
capture mechanisms such as DDGs, therefore, will have far-reaching effects in today's data-filled 
world.

7.0 References
1. Palmer, C.P, Boyd, D.W., and Yochelson, E.L. 2004. The Wyoming Jurassic fossil Dentalium 
subquadratum Meek, 1860 is not a scaphopod but a serpulid worm tube. Rocky Mountain 
Geology 39, 2, 85-91.

2. Montero, A and Dieguez, C. Types of Paleontological Collections, Interest: The Case of the 
Museo Nacional De Sciencias Naturales (MNCN), Madrid, Spain. In International Symposium 
and First World Congress on Preservation and Conservation of Natural History Collections, Vol 
2. 221-227.  

3. Moreau, L., Groth, P., Miles, S., Vazquez-Saldeca, J., Ibbotson, J., Jiang, S., Munroe, S., Rana, 
O., Schreiber, A., Tan, V. and Varga, L. 2008. The Provenance of Electronic Data. 
Communications of the ACM 51, 52-58. 

4.  Karl, T.R., Quayle, R.G. and Groisman, P.Y. 1991. Detecting Climate Variations and Change: 
New Challenges for Observing and Data Management Systems. Journal of Climate 6, 
1481-1493. 

5. Distributed Proofreaders. <http://www.pgdp.net/c/>

6. Bose, R. and Frew, J. 2005. Lineage Retrieval for Scientific Data Processing: A Survey. ACM 
Computing Surveys 37, 1-28. 

17

http://www.pgdp.net/c/
http://www.pgdp.net/c/


7.  Freire, J. and Davidson, S. 2008. Provenance and Scientific Workflows: Challenges and 
Opportunities. ACM SIGMOD 1345-1350. 

8. Freire, J., Koop, D., Santos, E. and Silva, C. 2008. Provenance for Computational Tasks: A 
Survey. Computing in Science and Engineering 10, 11-21. 

9. Simmhan, Y.L., Plale, B. and Gannon, D. 2005. A Survey of Data Provenance in e-Science. 
ACM SIGMOD 34, 31-36. 

10. Simmhan, Y.L., Plale, B. and Gannon, D. 2005. A Survey of Data Provenance Techniques. 
Technical Report TR-618.

11. McPhillips, T., Bowers, S., Zinn, D. and Ludascher, B. 2009. Scientific workflow design for 
mere mortals. Future Generation Computer Systems 541-551. 

12. Altinas, I., Barney, O. and Jaegar-Frank, E. Provenance Collection Support in the Kepler 
Scientific Workflow System. Provenance and Annotation of Data. Lecture Notes in Computer 
Science 4145. Springer, 2006.

13. Bowers, S., McPhillips, T., Riddle, S., Anand, M. and Ludascher, B. 2008. Kepler/pPOD: 
Scientific Workflow and Provenance Support for Assembling the Tree of Life. IPAW '08. 

14.  Missier, P., Behajjame, K., Zhao, J., Roos, M. and Goble, C. Data lineage model for Taverna 
workflows with lightweight annotation requirements. 

15.  Howe, B., Lawson, P., Anderson, E., Santos, E., Freire, J., Scheidegger, C., Baptista, A. and 
Silva, C. 2008. End-to-End eScience: Integrating Workflow, Query, Visualization, and 
Provenance at an Ocean Observatory. IEEE International Conference on e-Science. 

16. Scheidegger, C., Koop, D., Santos, E., Vo, H., Callahan, S., Freire, J. and Silva, C. 2007. 
Tackling the Provenance Challenge One Layer at a Time. Concurrency and Computation: 
Practice and Experience 1. 

17. Moreau, L. The Open Provenance Model (v1.01). 

18. Moreau, L., Ludascher, B., Altinas, I., Barga, R.S., Bowers, S., Chin, G., Coen, S., Cohen-
Boulakia, S., Clifford, B., Davidson, S. and Deelman, E. 2000. The First Provenance Challenge. 
Concurrency and Computation: Practice and Experience. 

19. Osterweil, L.J. 1987. Software Processes Are Software Too. In Proceedings of the 9th 
International Conference on Software Engineering. Monterey, CA, 1987, 2-13. 

20. LASER Lab. <http://laser.cs.umass.edu/>. 

21. LASER Process Working Group. Little-LIL 1.5 Language Report. 3 October 2006. 
Laboratory for Advancement of Software Engineering Research, University of Massachusetts, 
Amherst. 

22. Osterweil, L.J., Clarke, L., Ellison, A.M., Podorozhny, R., Wise, A., Boose, E. and Hadley, 
J.L. Experience in Using a Process Language to Define Scientific Workflow and Generate 
Dataset Provenance. 

18

http://laser.cs.umass.edu/
http://laser.cs.umass.edu/


23. Osterweil, L.J. 1987. Software Processes Are Software Too. In Proceedings of the 9th 
International Conference on Software Engineering. Monterey, CA, 1987, 2-13. 

24. Osterweil, L.J., Clarke, L., Ellison, A.M., Boose, E., Podorozhny, R. and Wise, A. 2009. 
Applying Software Engineering Technology to Support the Clear and Precise Specification of 
Scientific Processes. 

25. Ellison, A.M., Osterweil, L.J., Clarke, L.,Haldley, J.L., Wise, A., Boose, E., Foster, D.R., 
Hanson, A., Jensen, D., Kuzeja, P., Riseman, E. and Schultz, H. 2006. Analytic webs support the 
synthesis of ecological data sets. Ecology 86, 1345-1358. 

26. Boose, E., Ellison, A.M., Osterweil, L.J., Clarke, L., Podorozhny, R., Hadley, J.L., Wise, A. 
and Foster, D.R. 2007. Ensuring reliable datasets for environmental models and forecasts. 
Ecological Informatics 2 237-247. 

27. Boose E. 2007. Prospect Hill Hydrological Stations. Harvard Forest Data Archive: HF070. 
<http://harvardforest.fas.harvard.edu:8080/exist/xquery/data.xq?id=hf070> 

28. National Science Foundation (2010, May 10). Scientists seeking NSF funding will soon be 
required to submit data management plans.  ScienceDaily. Retrieved May 11, 2010, from < 
http://www.sciencedaily.com/releases/2010/05/100510105136.htm> 

19

http://harvardforest.fas.harvard.edu:8080/exist/xquery/data.xq?id=hf070
http://harvardforest.fas.harvard.edu:8080/exist/xquery/data.xq?id=hf070
http://www.sciencedaily.com/
http://www.sciencedaily.com/

