
You don’t generate your own electricity. Why generate your own computing? - Jeff Bezos

Cloud computing is the idea of using computing as a utility. It allows users to pay for computing resources as
they use them, with no upfront cost, and with effectively infinite scalability. One of the most popular uses of
cloud computing is cloud data stores. This tutorial is meant to guide you through the process of using
DynamoDB (a cloud computing database) to store data.

DynamoDB is a fully managed NoSQL database service offered by the Amazon AWS cloud stack. It provides
quick, predictable performance with automatic scalabiltiy based on the provisioned throughput setitngs you can
apply to your tables. DynamoDB tables can store and retrieve any amount of data, serve any level of request
traffic you require for your applications, and run across multiple servers in the Amazon AWS cloud stack.

If you do not already have one, you can set up an AWS account here for free. We can connect to the AWS
ecosystem in various ways but since we will be creating a java application, it is simplest to use Eclipse (a Java
IDE), which has a plugin for AWS services called the AWS Toolkit for Eclipse. The instructions to download this
are available here

Ensure that your AWS credentials are in the correct location in your file system - the config file is traditionally
located in ~/.aws/credentials on Mac/Linux.

In Eclipse, go to File -> New -> Other -> New AWS Java project.

Note that before creating the table, we must first create a client for DynamoDB. This client will need information
about the AWS Access Key. We can use the ProfileCredentialsProvider class, which will return your default
credential profile by reading from the credentials file located at ~/.aws/credentials .

Getting started with AWS DynamoDB

What is Cloud Computing

AWS DynamoDB at a glance

Creating a DynamoDB backend for your application

What you will need:

Creating a DynamoDB client

https://aws.amazon.com/
http://docs.aws.amazon.com/toolkit-for-eclipse/v1/user-guide/setup-install.html

Lets create a table called “movie-ratings” with 4 fields: “movie”, “rating”, “fans”, and “year of release”.
DynamoDB requires that we specify a primary key - in this case, it makes sense to set the movie name -
“movie” - as the primary key. When we create a table in DynamoDB, we must specify a table name, its primary
key, and the required read and write throughput values. Since DynamoDB is a NoSQL database, except for the
required primary key, it is schema-less and individual items can have any number of attributes.

DynamoDB supports two different kinds of primary keys:

Partition key: Composed of one attribute. DynamoDB takes a hash of this value to determine the partition
where the item will be stored. Thus must be unique because no two items in a table can have the same
partition key value.
Partition and Sort key: Hashes the partition key to determine the partition where the item will be stored.
All items with the same partition are stored together, sorted by the sort key value.

A KeySchemaElement represents a single element of a key schema. It specifies the attributes that make up
the primary key of a table, or the key attributes of an index. It must be a ScalarAttributeType - of either String,
Number, or Binary. It cannot be nested within a List or a Map.

A key schema element’s KeyType an be of type Hash (partition key) and Range (sort key). Note that the
partition key of an item is sometimes referred to as the hash attribute and the sort key is sometimes referred to
its range attribute.

We must also specify the ProvisionedThroughput for the table. This determines the read/write performance
desired from the table in terms of reads and writes per second.

/**

*	Create	a	client	for	DynamoDB.	Initialize	it	with	your	AWS	credentials.

**/

public	void	initialize()	{

				AWSCredentials	credentials	=	null;

				try	{

								credentials	=	new	ProfileCredentialsProvider().getCredentials();

				}	catch	(Exception	e)	{

								throw	new	AmazonClientException("Cannot	load	the	credentials	from	the	credential	profiles	file."

				}

				dynamoDB	=	new	AmazonDynamoDBClient(credentials);

				Region	usWest2	=	Region.getRegion(Regions.US_WEST_2);

				dynamoDB.setRegion(usWest2);

}

Creating a table

Next, we will create an new entry and add it to the movie-reviews table. We can represent an entry as a map
from a string (the primary key) to AttributeValue. We can write a helper method called ‘newItem’ that, given
the values for the movie name, year and rating, returns a mapping from the primary key the the attribute value.

Using this newItem method, we can create a PutItemRequest that serves as the input for the PutItem
operation.

This creates a DynamoDB item (row) that maps a movie to its Attribute Value (in this case, the movies rating,
year of release and fans).

DynamoDB	dymanoDB	=	new	DynamoDB(client);	

String	tableName	=	"movie-rating";

dynamoDB.createTable(tableName,	

				Arrays.asList(

								new	KeySchemaElement("movie",	KeyType.HASH)),	//	Partition	key

								Arrays.asList(

												new	AttributeDefinition("rating",	ScalarAttributeType.S),	

												new	AttributeDefinition("year",	ScalarAttributeType.N),	

												new	AttributeDefinition("fans",	ScalarAttributeType.S)),	

								new	ProvisionedThroughput(10L,	10L));	//	10L	is	the	default	

									table.waitForActive();	//	polls	database	in	a	loop	until	the	table	created	becomes	available	

private	static	Map<String,	AttributeValue>	newItem(String	name,	int	year,	String	rating,	String	fans

				Map<String,	AttributeValue>	item	=	new	HashMap<String,	AttributeValue>();	

				item.put("name",	new	AttributeValue(name));	

				item.put("year",	new	AttributeValue().withN(Integer.toString(year)));

				item.put("rating",	new	AttributeValue(rating));

				item.put("fans",	new	AttributeValue().withSS(fans));

}

Map<String,	AttributeValue>	item	=	newItem("Bill	&	Ted's	Excellent	Adventure",	1989,	"****",	"James"

PutItemRequest	putItemRequest	=	new	PutItemRequest(tableName,	item);	//	create	putItemRequest	object	

//	the	putItem	method	either	creates	a	new	item	in	the	table,	or,	if	the	given	primary	key	already	exists	in	the	table,	replaces	an	old	item	with	a	new	item	

dynamoDB.putItem(putItemRequest);	

Add an entry to the table

Querying a table

Suppose we want to search the table for the values of a particular movie. Since we are looking up a movie
entry by the movie name (which is the hash key for this table), we can use a Query . A query can look up a
record given a hash key. If multiple records have the same hash key, then all of them will be returned, sorted by
their range keys. Note that a hash key and a range key can be used to uniquely identify a record.

Suppose we don’t know the name of the movie but we just want a list of movies rated 5 stars. We can search
for items in the table by using the Scan operation. Using Scan will return one or more item attributes by
accessing every item in a table. We pass in a Condition to the scanFilter to parse through the results and
return the correct ones.

Setting up infrastructure to handle large amounts of data that needs to be collected and processed in realtime
can be quite simple when deployed using the server less products currently available. This tutorial gave an
introduction to using AWS managed services to store movie-ratings data using DynamoDB. Note that we did
not have to spin up a single server yet DynamoDB can scale to read and write entire gigabytes of data per
second.

//	Create	a	condition	to	evaluate	the	scan	results	and	return	the	desired	values	

Condition	condition	=	new	Condition().withComparisonOperator(ComparisonOperator.GT.toString()).

HahsMap<String,	Condition>	queryFilter	=	new	HashMap<String,	Condition>();	

queryFilter.put("name",	condition);	

QueryRequest	queryRequest	=	new	QueryRequest().withTableName(tableName).withKeyConditions(queryFilter

QueryResult	queryResult	=	dynamoDB.query(queryRequest);	

//	Create	a	condition	to	evaluate	the	scan	results	and	return	the	desired	values	

Condition	condition	=	new	Condition().withComparisonOperator(ComparisonOperator.GT.toString()).

HahsMap<String,	Condition>	scanFiler	=	new	HashMap<String,	Condition>();	

scanFilter.put("rating",	condition);	

ScanRequest	scanRequest	=	new	ScanRequest(tableName).withScanFilter(scanFilter);	

ScanResult	scanResult	=	dynamoDB.scan(scanRequest);	

Scanning a table

Concluding remarks

