
Specifying Process Coordination Using Little-JIL

Alexander Wise, Barbara Staudt Lerner, Eric K. McCall,
Leon J. Osterweil, and Stanley M. Sutton Jr.

Computer Science Department
Lederle Graduate Research Center

University of Massachusetts
Amherst, MA 01003-4610 USA

+1 413 545 2013
wise, lerner, mccall, ljo, sutton @cs.umass.edu

ABSTRACT
This paper presents Little-JIL, a new language for program-
ming agent coordination. Little-JIL is an executable, high-
level process language with a formal (yet graphical) syntax
and rigorously defined operational semantics. The central
abstraction in Little-JIL is the “step.” Little-JIL steps serve
as focus for other coordination- supporting features and pro-
vide a scoping mechanism for control, data, and exception
flow and for agent and resource assignment. Steps can be
composed hierarchically, but Little-JIL processes can have
highly dynamic structures and include recursion and concur-
rency.

Little-JIL is based on two main hypotheses. The first is that
processes are executed by agents who know how to perform
their tasks but who can benefit from coordination support.
Accordingly, each step in Little-JIL is assigned to an exe-
cution agent (human or automated); agents are responsible
for initiating steps and performing the work associated with
them. The second hypothesis is that the specification of coor-
dination control structures is a separable issue. In this regard
Little-JIL provides a rich set of control features; however, it
relies on separate systems for support in areas such as re-
source, object, and agenda management.

This approach has so far proven effective in allowing us to
clearly and concisely express the agent coordination aspects
of a wide variety of software and workflow processes.

Keywords
Process programming, Little-JIL

1 Introduction
There is a growing need for process and workflow specifi-
cation in many contexts. This is evidenced by both a grow-
ing marketplace as a well as a thriving research community.
Most process and workflow languages tend to fall in one
of two camps: rigorous programmatic descriptions or eas-
ily understood, graphical languages. There are advantages

to each. Rigorous specifications support analysis and exe-
cution, while graphical specifications support high-level de-
scription and understandability. There are also disadvantages
to each. Programmatic specifications can be extremely diffi-
cult to understand, particularly by non-programmers, while
with graphical specifications, it is often difficult to capture
many important details, such as exception handling. In this
paper, we present Little-JIL, a rigorous, graphical language
for specifying processes and workflow.

Little-JIL is strongly rooted in our past research on process
programming languages[?, ?], but makes an important break
in two respects. First, it is a graphical language. Second,
it abstracts certain process elements into separate specifi-
cation languages that are integrated with Little-JIL, rather
than creating a single monolithic language. In this way, the
graphical language remains simple and can present a concise
high-level view of a process. Integration with other com-
ponents maintains the ability to express detailed processes
where necessary.

The focus of Little-JIL processes is coordination: coordina-
tion of autonomous agents, coordination of shared resources,
coordination of information flow. Coordination is explicit in
the graphical notation. Agents are autononoums entities, hu-
man or software. Assignment of tasks to agents is explicit
in Little-JIL processes, but the details of how these agents
perform their tasks is specified externally to the Little-JIL
process. Similarly, resources are external entities whose use
must be monitored and controlled. The resource needs of a
process are specified in a Little-JIL process, while the de-
tailed workings of the resource model are specified exter-
nally. Finally, information/data must be propagated between
agents in order for them to accomplish their work. This flow
is expressed in the Little-JIL process, while the detailed def-
inition of the data types and how they may be manipulated is
again specified externally to the process.

We believe that this approach of minimizing the process lan-
guage and factoring out related components can lead to bene-
fits in many areas, including process analysis, understanding,
adaptation, and execution. In this paper, we present the de-
sign of Little-JIL and our experiences with it is a graphical,
coordination process language.

2 Approach

In previous work, we have investigated extending a conven-
tional programming language with process-motivated exten-
sions (APPL/A [?]). This work suggested that it would be
preferable to develop a new special purpose, high-level lan-
guage designed specifically for process programming. This
new language, JIL, has been described elsewhere [?]. Pre-
liminary evaluation of JIL has suggested: 1) the value of
high-level, process-oriented semantics, 2) the utility of the
”step” as a central abstraction, 3) the use of the step con-
struct as a scoping construct for other features, and 4) the
validity of a factored language design, which allows, insofar
as possible, the various aspects of a process to be described
independently and as needed. Both APPL/A and JIL aimed
to be comprehensive in their features and were concerned
with supporting full process implementations, including nec-
essary computational and data-modeling functionality. How-
ever, this work also underscored the difficulties, both in de-
veloping and in using, such large and complex languages.

The work described here draws on and extends the lessons of
JIL, but pursues a more focused and visual approach. It re-
tains the step as the central abstraction but refines the features
in terms of which a step is defined and emphasizes the role of
the step as a scoping mechanism. It also uses a visual repre-
sentation to reinforce these notions, and to enhance usability
and comprehensibility. This work also pursues the idea of
separating different aspects of step definition into indepen-
dent factors, and advances the hypothesis that a particularly
useful collection of factors centers on agent coordination.

The language described here, which is based on a subset of
JIL, is called Little-JIL. The design of the Little-JIL has four
primary themes.

Simplicity: To foster clarity, ease-of-use, and understand-
ability, a concerted effort has been made to keep the language
simple. Features have been added to the language only when
there has been a demonstrated need in terms of function, ex-
pressivity, or the simplification of programs.

Furthermore, by focusing on coordination [REMARK:
rather, by using a factored approach in general] , we have
been able to simplify language design relative to that of a
computationally complete process language. To help make
the language accessible to both developers and readers, we
have adopted a primarily visual syntax.

Expressiveness: [REMARK: look up best word] Subject
to (and supportive of) the goal of simplicity, Little-JIL should
be an expressive language. Software and workflow processes
are semantically rich domains, and a process language, even
one focused on coordination, must reflect a corresponding
variety of semantics. The language should allow the user to
speak to the range of concerns relevant to a process, and to
express their intentions in a clear and natural way.

Separability: In keeping with the principles of simplifica-
tion and factoring [REMARK: circular definition?] ,

Little-JIL relies on separate systems for certain functionality
that is not deemed central to the expression of coordination
structures. These include, for example, resource manageme-
ment, data management, and agenda management. This al-
lows the core coordination language to be simpler and easier
to understand, develop, and use. Additionally, by factoring
out certain functions, we hope to allow them to be developed
and evolved in independent ways, as appropriate to the envi-
ronments and organizations in which they will be used.

Precision: Little-JIL is an executable language. The goal of
executability has two main benefits in process language de-
sign. First, it helps to foster on semantic rigor: the language
must be substantially complete [REMARK: what does that
mean?] , consistent, and unambiguous. Second, it supports
the execution of processes in accordance with their speci-
fication in the program. Through execution, what is known
and validated about a process specification can be transferred
to the process behavior itself. [REMARK: we now must
rewrite to say that the language is hopefully analyzable]

There are many other software and language design crite-
ria we followed, such as hierarchic decomposition, scop-
ing, orthogonality, and so on, but the four goals described
were the primary concerns for Little-JIL. These concerns are
not orthogonal, however, so the design of Little-JIL has also
involved balancing tradeoffs. For example, adding a con-
trol construct may increase expressivity, but it may also in-
crease complexity in terms of the number of language fea-
tures. Some additional complexity may be warranted if new
features will be widely used or they result in a simplifica-
tion of programs, but such factors may be difficult to weigh.
Fortunately, our design themes can also be complementary:
separating out components of a language may increase its
simplicity.

In the next section we describe the features of Little-JIL. We
show how Little-JIL can be used to clearly and effectively ex-
press the coordination aspects of agent-based processes us-
ing a running example based on a standard workflow-process
problem.

3 Language and examples
As described previously, capturing a process as a hierarchy
of steps is the central focus of programming in Little-JIL.
Little-JIL is a graphical language, with a program looking
like a tree of steps with the smallest units of work as leaves.
All of the “real” work of a process is done by the agents
assigned to these leaf steps.

There are six main features of the Little-JIL language we
highlight in this paper. Due to space constraints, we can only
give a feeling for what programming in Little-JIL is like;
specific language semantics are provided by the Little-JIL
language report [?].

The features of the language and raison d’etre are:

Four step kinds provide control flow. These four kinds,

2

Postrequisite Badge

HandlerStep

Exception

Step Name

Reaction Step

Message

Parameter

SubStep

Interface Badge

Exception Handler Badge

Continuation Badge

Reaction Badge

Prerequisite Badge

Control Flow Badge

Figure 1: Legend

“sequential”, “parallel”, “choice” and “try”, are the bare
minimum we discovered we needed. With just these
four, the language remains simple to use yet expressive
enough to capture interesting processes.
Requisites allow increased agent autonomy. While req-
uisites decrease the simplicity of the language, we felt
they were necessary to allow process programmers to
write code that accurately reflects their intent. Req-
uisites are roughly equivalent to sequential steps with
three children (a prerequisite step, the “real” step, and
a postrequisite step). We believe the need for pre- and
post-requisites is common enough in process programs
and have different enough meaning from other sequen-
tial steps that a special notation was introduced.
Exceptions and handlers augment the control flow con-
structs of the step kinds and provide a degree of reac-
tive control we believe is necessary. Exceptions allow
a process programmer to simply and accurately codify
common processes. The exception mechanism in Little-
JIL has been designed with great care to be simple, yet
remain expressive and executable.
Messages and reactions allow reactive control, and
greatly increase the expressive power of Little-JIL.
They also provide independence from a program’s hi-
erarchic structure... [REMARK: add something to
distinguish this from exceptions]
Parameters passed between steps provide data flow.
The type model has been separated out – Little-JIL
merely agrees to give (a named copy of) the parent
step’s appropriate parameter values to the child steps.
Resources allow for more dynamic process execution,
and allow “execution agents” (and a resource manager
component) to be separated out.

What’s “missing” from the above feature list is also impor-
tant to note. Little-JIL does not specify a type model, condi-
tionals, or any loop step kinds.

[REMARK: Introduce basic states for steps here; posted,
started, completed, terminated only.]

The graphical representation of a Little-JIL step is shown in

figure 1. This figure shows the various badges that make up
a step, as well a step’s possible connections to other steps.
The interface badge at the top is a circle by which this step is
connected to its parent. The circle is filled if there are local
definitions associated with this step, and is empty otherwise.
Below the circle is the step name, and to the left is a trian-
gle called the pre-requisite badge. The pre-requisite is a step
that must be successfully completed for this step to begin
execution. The badge appears filled if the step has a pre-
requisite step, and an edge may be shown that connects this
step to its pre-requisite (not shown). On the right is another
similarly filled triangle called the post-requisite badge. The
postrequisite step is begins execution immediately after the
step completes execution, but must also successfully com-
plete for the parent to be notified of the step’s completion.
Within the box below the step name are three more badges.
From left to right, they are the control flow badge, which
tells what kind of step this is and to which child steps are
attached, the reaction badge, to which reaction steps are at-
tached, and the exception handler badge, to which exception
handlers are attached. These badges are hidden if there are
no child steps, reactions, or handlers. The edges that come
from these badges are annotated with parameters (passed to
and from substeps), messages (to which reactions occur), and
exceptions (that a handler should handle) respectively.

To better motivate these features and to illustrate their use,
we present a trip planning process, codified in Little-JIL.
The process is based on one presented in []. Our version
involves four people: the traveler, a travel agent, and two
secretaries. The basic idea is to make an airline reservation,
trying United first, then USAir. After the airline reserva-
tion is made and travel dates and times are set, car and hotel
reservations should be made. The hotel reservations may be
made at either Days Inn or, if the budget is not tight, the Hy-
att, and the car reservations may be made with either Avis
or Hertz.1 If (after making the reservations) the traveler has
gone over budget, and a Saturday stayover was not included,
the dates should be changed to include a Saturday stayover
and another reservation attempt should be made.

Step kinds
In figure 2 the framework of the Little-JIL program for the
trip planning process is in place. Each of the four step kinds
are used where appropriate; a sequential step to make plane
reservations before car and hotel reservations, a try step to try
United first, then USAir, a parallel step to allow the two sec-
retaries to make car and hotel reservations simultaneously,
and choice steps to allow a secretary to choose which hotel
chain or car company to try first.

Note that the process program is relatively resilient to com-
mon changes. For example, changing the process program
to express a preference in hotel or car rental companies or

1The Little-JIL process programming team, LASER, and the University
of Massachusetts in no way endorse any of these companies for travel plan-
ning, and are in no way liable for damages should travel mishap occur.

3

UnitedReservation

Sequential
Try
Choice
Parallel

PlaneReservation InBudget

HotelReservation CarReservation

DaysInnReservation

NotTightBudget

HyattReservation AvisReservation HertzReservation

CarAndHotelReservation

USAir Reservation

PlanTrip

Figure 2: Reservation process: step kinds

deciding to attempt all reservations in parallel can be accom-
plished with a straightforward change of step kind.

[REMARK: The treatment of the budget says a lot about the
approach we have taken with Little-JIL. It is assumed that
the agents executing steps that need to consult the budget
know how to do so; “budget” is not explicitly modeled in the
Little-JIL program. Thus, the Little-JIL program provides
guidance about when to check the budget, but doesn’t dictate
any particular way of doing so.]

Requisites
The functionality of pre- and post-requisites has been pre-
viously described. There are two cases in the example (fig-
ure 2) where requisite steps have been used (though many
more opportunities exist).

A postrequisite has been attached to the PlaneReservation
step to check that the airfare hasn’t exceeded the budget.
This means that after the travel agent has successfully made
an airline reservation, the agent should complete the InBud-
get step.

A prerequisite for the HyattReservation step is also shown.
This prerequisite could be considered an process program
optimization that is based on the assumption that staying at
a Hyatt depletes one’s travel budget more than staying at a
Days Inn. When a secretary chooses to reserve a room at the
Hyatt, if the budget is too tight, the reservation step aborts
immediately because we know that we will already go over
budget.

[REMARK: Comments about requisites vs. sequential steps
go here?]

Exceptions and handlers
Exceptions and handlers provide an extremely useful reac-
tive control mechanism. Such mechanisms are common in

both modern programming languages and in real word pro-
cess execution. The exception mechanism in Little-JIL is
based on the use of steps to define the scope of exceptions
and handlers. Exceptions are passed up the tree (call stack)
until a matching handler is found. There are four flavors of
exception handlers: continue, complete, restart, and rethrow.
The flavor of the handler helps to determine what happens to
step execution if the exception is successfully handled by the
step. Specific semantics are provided in [?].

If the agent cannot complete the InBudget prerequisite step
previously mentioned (because it determines that the budget
has been exceeded), an exception, NotInBudget (not shown),
is thrown to the parent. [REMARK: Should the rest (or all)
of this discussion be moved to exception section? Chicken
and egg problem, since these features interact.] The par-
ent step’s handler, IncludeSaturdayStayover, would check to
see that a Saturday stayover was no already included, and
if not, would change the travel dates and successfully com-
plete. Because the exception has handled successfully, the
step would restart with the new travel dates. If there was al-
ready a Saturday stayover, the handler could throw another
exception that would be propagated higher in the tree (or
would terminate the program).

Messages and reactions
Messages and reactions are intended to be another for re-
active control in Little-JIL. While exceptions and handlers
are used to indicate and fix up exceptional conditions or er-
rors during program execution, messages and reactions are
a more general mechanism. The greatest difference between
these language features is that messages do not propagate up
the program tree, being global in scope instead – any exe-
cuting step can react to a message. Thus, messages provide a
way for one part of a process program to communicate events
in which another mostly unrelated part may be interested.

4

Continue
Throw

Restart
Complete

NoPlane

NoUSAir

PlanTrip

MeetingCanceled

UnitedReservation

PlaneReservation

USAir Reservation
NoUnited: exception NoUSAir: exception

NoPlane: exception

NoMoreChoices

CancelAndStop
IncludeSaturdayStayover

CarAndHotelReservationNoUnited

NoPlane

NotInBudget

Figure 3: Reservation process: exceptions, requisites, messages

An example of a reaction, the “handler” for a message, ap-
pears in figure 3. Here, when the MeetingCancelled mes-
sage is generated, the CancelAndStop substep of PlanTrip
is placed on the traveler’s agenda. In this case, there may be
very little information associated with that step; it is assumed
that the agent will take appropriate action (e.g., phoning the
travel agent and secretaries and asking them to abort).

Messages also provide a mechanism for agents to inject in-
formation into a running process program.

Parameters
In the example, it is clear that information must be passed
from step to step. For example, the PlaneReservation step
must pass the trip dates and times to the other reservation
steps so that a hotel room and car are reserved for the cor-
rect times. Parameters are indicated by annotations made on
the step connections, shown in figure 4.2 Arrows indicate
whether the parameters are in, out, or inout parameters (as in
languages such as Ada, [REMARK: and...]).

[REMARK: Also describe variable scope, (explicit passing
only, editor helps)]

Resources
In figure 4, annotations on the step interfaces denote resource
requirements for the step.

[REMARK: There’s definitely more we should say here.]

4 Experience
Process programs
The development of Little-JIL began in 1997, and has pro-

2In the figures, ellipses indicate when substeps have been omitted for
clarity. In practice, we expect a visual editor to elide information at the
user’s request.

ceeded as a series of iterative cycles of design and evalua-
tion. The current version of the language (version 1.0 [?]
) is the product of at least three such iterations, each of
which entailed the writing of process programs from a va-
riety of application areas. With each iteration, existing fea-
tures have been honed and sharpened, and new features have
been added with caution.

In the software engineering domain, we have written process
programs for coordinating the actions of multiple designers
doing Booch Object Oriented Design [?]. These processes
have focussed on programming coordination among design-
ers, and also on how to assure that the processes provide sup-
port to humans, while not appearing to be too prescriptive
or authoritarian. We have also written process programs for
guiding the use of the FLAVERS dataflow analysis toolset
[?]. In this work we have been particularly interested in us-
ing Little-JIL to support both novice and expert users in be-
ing more effective in using the several tools in this complex
toolset. We have also written process programs for guiding
application of formal verification methods and tools, but here
our experience has been rather limited. Finally, we have also
used Little-JIL to program the IPSW 6 process [?].

We have explored the application of process programming
to Data Mining as well. In [?] we describe the applicability
of process programming to this domain, and present some
example Little-JIL data mining process code. The focus of
this work has been to explore how well Little-JIL seems to
meet the needs in this area for vehicles to integrate diverse
tools, and program important interactions among tools that
focus on distant aspects of overall data mining processes.

We are also exploring the use of Little-JIL to programming
high-level strategies for coordinating teams of robots. In this

5

Input
Output

Input/output

CarAndHotelReservation

UnitedReservation

PlaneReservation

USAir Reservation

TripDates

Airline := United Airline := USAir

TripTimes
Hotel

HotelReservation CarReservation
agent: Secretary

agent: TravelAgent

PlanTrip

agent: Traveller

agent: Secretary

TripTimes

Airline
TripTimes

AirlineTripDates

Airline
TripDates

TripTimes

Hotel
Car

TripDates
TripTimes

Car
TripDatesTripDates

Figure 4: Reservation process: data flow

work we have been particularly interested in coordinating the
activities of humans with those of robots, and in evaluating
the effectiveness of our approach to resource specification.

We have also demonstrated the applicability of Little-JIL in
programming processes taken from the workflow domain.
One example of this is a collection of processes aimed at
coordinating the actions of both human and computer agents
in planning a trip.

Process programs
Runtime environment
The Little-JIL language has been designed to allow clean
separation of process environment components that are not
integral parts of the process language. In order to exe-
cute Little-JIL process programs, these separated compo-
nents must be provided. A Little-JIL process program exe-
cution environment consists of the following components:

Execution agents: these components are required to
accomplish the tasks codified in the process program.
They do the real work in the process, and make deci-
sions such as when a step should be started or which
exception a step throws.
Little-JIL interpreter: this component interprets the pro-
cess program by interacting with the other components
of the environment as dictated by the semantics of the
Little-JIL program being interpreted. It keeps track of
and responds to the state changes of steps.
Resource manager: the resource manager is responsi-
ble for managing the resources involved in a process
program. Its tasks include processing resource manage-
ment requests generated by the interpreter (including

requests for execution agents for a step) and handling
model change requests generated by execution agents
(upon, for example, the production of a resource needed
by other steps in the process).
Object manager: the object manager is responsible for
managing artifacts produced and needed by the process.
Among other things, it provides the type model used by
the system for parameter type checking and passing.
Coordination mechanism: this component handles the
coordination of the agents (and interpreter) during pro-
cess execution. It is responsible, for example, for noti-
fying an execution agent when the interpreter assigns it
a step for execution.

A variety of software systems could be used to serve as each
of these components. Our prototype Little-JIL process ex-
ecution environment, called Juliette, has as its components
a mixture of human and tool execution agents, a highly dis-
tributed interpreter, a resource manager, the Java 1.1 runtime
system and a filesystem, and an agenda management sys-
tem [?], respectively.

[REMARK: Comments about pass-by-copy step parameter
semantics supporting distributed execution go here. Talk a
tiny bit about how this allows us to have a ditributed inter-
preter (one for each step).]

5 Evaluation and future work
Our experience with Little-JIL thus far has been encourag-
ing. In general, we have found it relatively easy to express
the process semantics that we desire, and even more im-
portantly, to use Little-JIL as a communication mechanism
when interacting with domain experts. In this section, we re-

6

visit our four main design themes to identify where Little-JIL
has succeeded and where work remains.

Simplicity: While the graphical notation of Little-JIL is id-
iosyncratic, we have found it to be easy to learn both to read
and write the notation. This has been evidenced by our in-
teractions with researchers from other domains, specifically
from data mining, static analysis, and robotics.

Expressiveness: The syntax and the semantics of the lan-
guage has been driven both by abstractly reasoning about
processes, but also from experiecences directly using the lan-
guage. In particular, the four step kinds and four exception
continuation semantics were driven by needs found through
experience. Since freezing the semantics with those con-
structs, we have found the language to be capable of express-
ing the control flow that we have needed in our processes.
Through this experience, several idioms have emerged that
simplify the design and understanding of processes:

Resource-bounded recursion allows a step to be re-
peated multiple times executing with a different re-
source on each iteration. For example, assign a de-
sign task to a designer. When the designer completes
that task, assign another one. Stop making assignments
when there are no more tasks left.

Resource-bounded parallelism is similar to resource-
bounded recursion except that in this case the iterations
are allowed to happen in parallel. For example, assign a
different design task to each software designer to work
on in parallel. Stop making assignments when there are
no more designers left. 3

To maintain its simplicity, we have resisted impulses to add
features to the language, but our experience indicates that
it is probably necessary to add some traditional language
features to improve expressiveness. In particular, processes
often use exceptions for non-exceptional conditions, such
as terminating resource-bounded recursion and parallelism.
We are currently considering adding looping and conditional
constructs as well as a simple expression language to reduce
the inappropriate use of exceptions, being careful to balance
the needs of simplicity and expressiveness.

Thus far in our experience, reactions have been used less than
the other mechanisms. They appear to be quite important in
the robotics domain. As we get more experience with them,
we expect their semantics to shift somewhat.

Object management is another area where we recognize the
need for future work. Of particular importance is the abil-
ity to express the sharing of information among steps and
agents as well as asynchronouse information flow between
steps that are executing concurrently.

3Note that resource-bounded recursion and parallelism could be inter-
twined so that tasks would be assigned in parallel as long as there were more
designers and then sequentially to each designer as designs were completed.

Separability: The goal of separating out the concerns of
agent management, resource management, and object man-
agement has been a tremendous benefit. This has resulted
in a much simpler language, allowing more concise process
representations. It is largely the separation of concerns that
enables the graphical representation to be feasible, while still
allowing the definition of detailed processes.

Precision: We require precision in our language for two rea-
sons: executability and analyzability. We are in the process
of developing an interpreter for Little-JIL. We have found the
definition of Little-JIL to be precise enough for this purpose.
To execute a process requires integration with external com-
ponents, agents, an agent management system, a resource
manager, and an object manager. Thus far we have writ-
ten and executed processes integrating multiple agents (hu-
man and automated), an agent management system, and a
resource management system. Object management has been
done through the file system and resource manager. Much of
the detailed behavior of a process is imprecise. Rather it is
left to the agents since we believe micromanagement of an
agent’s process to be inappropriate. [REMARK: E] vo-
lution is not discussed, but it should probably go here if we
want to do it.

We also believe that analyzability is an important property
for processes to have. Complex processes typically involve a
great deal of concurrent activity being performed by multiple
agents. We want to reason about common concurrency prob-
lems, such as ordering of activities, possibilities for deadlock
or starvation, and so on. Thus far our analysis has been lim-
ited to manual evaluation of processes, but we believe Little-
JIL is precise enough to allow application of static analysis
technology. It will be interesting to discover what the prac-
tical limits of analysis are, particularly as separability allows
details to be missing in the Little-JIL representation. It will
likely be necessary to perform analysis across the represen-
tational boundaries imposed by the Little-JIL architecture.

In conclusion, our evaluation of Little-JIL is continuing
through the definition of processes from a variety of do-
mains, implementation of an interpreter and supporting com-
ponents, and use and analysis of the resulting processes. We
expect to learn a great deal from these experiments and ex-
pect to continue to refine Little-JIL as experience directs us.
[REMARK: Here are notes we made about what to include
in this section. Delete these as desired.]

6 Related Work
In Little-JIL, the process step is the central abstraction. A
number of process languages based on general-purpose pro-
gramming languages or Petri-Nets, such as APPL/A [?],
AP5 [?], and SLANG [?], lack such high-level, process-
oriented abstractions. [REMARK: Check Marvel.]
Other languages have also focused on process steps, includ-
ing HFSP [?], ProcessWeaver [?], Teamware [?], and JIL [?].
[REMARK: Check also EPOS andMelmac] Still other lan-

7

guages, such as ALF [?], Merlin [?], and Adele-Tempo [?],
focus on “work contexts” (which may be correlated with
steps). [REMARK: Check also APEL.] Oikos [?] uses
a number of high-level abstractions (including processes, of-
fices, and desks, among others).

Many process languages are entirely or significantly textual
(at least in their process representation, if not their user inter-
face); these include including APPL/A, HFSP, Merlin, Mar-
vel, AP5, and ALF, among others. Little-JIL is primarily a
visual process language. Its graphical model is distinctive in
that it emphasizes the hierarchical breakdown of a process
while keeping the within-step flow simple (i.e., based on the
four control kinds). There are a number of other graphical
process languages. Many use net-based models, including
SLANG, Melmac, ProcessWeaver, and Teamware. These
are variably high or low level in their semantics, but they
generally emphasize the “horizontal” flow within a step (al-
though typically still allowing hierarchical decomposition).
Statemate [?] provides three coordinated graphical views
that incorporate hierarchy albeit with a nested representa-
tion. Little-JIL is also distinctive in graphically capturing
requisites, proactive and reactive control and exception han-
dlers in its process structure. No other graphical languages
represent this variety of control modes, although some in-
clude reactions to events. [REMARK: Check APEL, Oikos.
]

Little-JIL is a semantically broad language, although some
semantic details of Little-JIL programs must be defined
within factors that are separate from the language (e.g.,
agents, resources, data). The general categories of feature
in Little-JIL are adopted from JIL. Several other process lan-
guages are also semantically rich, with combinations of fea-
tures that are more or less comparable to those in Little-
JIL. For modeling process tasks [REMARK: check!]
, EPOS has instance-level attributes, procedures, and trig-
gers, and type-level attributes and procedures. The type-
level attibutes include pre/postconditions, parameters, tools,
substeps, and “role” (i.e., agent kind). ALF work con-
texts (“MASPs”) include an object model (parameters), tools
(with pre/postconditions), ordering constraints on operators
(path expressions), rules (reactions) and “characteristics”
(postconditions on the MASP as a whole). ALF lacks ex-
plicit exception handlers and assumes that agents are spec-
ified and assigned separately. PEACE [?] has input/output,
pre/postconditions, in/out events, and “intrinsic role” (a hu-
man agent). [REMARK: Check some others, e.g. Adele-
Tempo.]

A particular feature that helps to distinguish Little-JIL is its
explicit, scoped exception handling. Surprisingly (in view
of the prevelance of exceptions in processes), few other lan-
guage support this (exceptions being APPL/A and JIL). Sup-
port for exception handling in other process languages, if it
exists, usually takes one of two forms. Some languages pro-
vide consistency rules for violation of consistency conditions

(one kind of exception), for example, Merlin, Marvel, and
AP5 [REMARK: Others?] . Other languages provide gen-
eral reactive mechanisms that might be used to handle ex-
ceptional events, although these would not be differentiated
from normal events. Some examples include ALF, Adele-
Tempo, Statemate

As described in Section [?], Little-JIL, like JIL, is a factored
language, but focusing on coordination-related factors, with
other factors, such as resource management and data man-
agement, abstracted. JIL, although factored, is intended to
be a full-featured (or nearly full-featured) process language,
as are, evidently, some others (e.g., ALF, EPOS, Merlin).
Some other languages are achieve an effect like factoring in
that they either depend on or are intended capture aspects
of a process related to externally defined elements, such
as agents, tools, or artifacts. Some examples inlcude ALF
(where agents are defined wholly outside the MASPs, and
operators and objects are bound to external tools and arti-
facts), and ProcessWeaver (in which external agents, tools,
and artifacts are coordinated). [REMARK: Others reason-
ably in this category? APEL?]

Little-JIL has as its primary function the coordination of ex-
ecution agents. Many process languages provide no first-
class representation of execution agent (e.g., APPL/A, HFSP,
Marvel, SLANG, Melmac). However, external execution
agents are also associated with processes in languages in-
cluding JIL, Merlin, PEACE, EPOS, Teamware, and ALF.
[REMARK: Check handling in Teamware.] In most
of these, some form of agent specification is given as part
of the process (ALF being an exception where the agent
specification is factored out). Most of these languages are
specifically concerned with human agents; automated enti-
ties are addressed by mechanisms that incorporate “tools.”
In Little-JIL (and JIL) the notion of “agent” subsumes both
human and automated entities both, where the latter may in-
clude, for example, tools and robots. Little-JIL programs
(more strictly, their interpreters) communicate with execu-
tion agents, human and automated, via an agenda manage-
ment system. Other systems that provide agenda-like mech-
anisms, albeit for human agents, include Merlin, ALF [
REMARK: check] , and ProcessWeaver. [REMARK: cite
SPADE-1 too – Eric]

Agents in Little-JIL are a distinguished part of a general re-
source model. As for agents, many languages provide no
specific features for resource modeling. The main exceptions
support specificaion of (some subset of) agents, tools, and ar-
tifacts as specific kinds of entitites available to a step (e.g.,
PEACE, ALF, EPOS). More general resource modeling is
supported in a few cases. [REMARK: Say something about
MVP-L.] Merlin allows the general technical resources for
a work context to be defined but provides no independent
resource modeling capability. Oikos models customizable
resource managers as services; these may include tool and
product repositories, workspaces, actors, and process mod-

8

els. [REMARK: Check Teamwear.]

[REMARK: The languages reviewed so far are incomplete,
and some that are not mentioned in other remarks remain to
be considered, although I don’t expect any significant expan-
sions of this text.]

7 Conclusion

9

