
A Basis for AspectJ Refactoring

Shimon Rura! and Barbara Lerner

Williams College, Computer Science Department
Williamstown, MA 01267 USA

srura@wso.williams.edu, lerner@cs.williams.edu

Abstract. Refactorings are specific code transformations that can im-
prove the design of existing code without changing its behavior. Many
refactorings for object-oriented programs are well known, and refactoring
support is now common in IDEs. Authors of AspectJ programs, however,
cannot take full advantage of this wisdom and tool support for two rea-
sons. First, there is currently a limited set of aspect-oriented refactorings.
A second, more fundamental, problem is that aspect-oriented language
constructs can impact what changes are behavior-preserving. As a re-
sult, even traditional refactorings are unreliable. This paper presents a
framework for judging whether a program transformation is a refactor-
ing in AspectJ. This framework is then applied to establish AspectJ-safe
versions of existing refactorings and several new refactorings specific to
AOP designs.

1 Introduction

A refactoring is a behavior-preserving source code transformation typically used
to improve the design of a program. Refactorings have traditionally been applied
ad hoc by programmers. Recently, however, a growing body of work has focused
on identifying and describing common refactorings [Fow00] as well as providing
automated support for refactoring in popular languages [Goo03]. Proponents of
refactoring claim it enables better design: instead of repeatedly compromising
the design in the face of changing requirements, engineers can refactor the de-
sign to more easily accommodate the code implementing the new requirements.
Clear descriptions and automatic refactoring tools help software developers share
useful refactorings and apply them with greater speed and fewer mistakes.

Refactoring shares its goal of enabling improved software designs with Aspect-
Oriented Programming. Since most Aspect-Oriented languages are based on ex-
isting popular Object-Oriented languages, we would like to make use of OO refac-
torings in AOP languages. Unfortunately, the additional semantics of aspect-
oriented languages make existing refactoring techniques insufficient to preserve
program behavior in general. If we can understand what comprises behavior
preservation in an aspect-oriented language, we can extend known refactorings
so that they are valid in aspect-oriented programs, and develop new refactorings
that help programmers deploy AOP features.
! Now at Kronos, Inc., Chelmsford, MA, USA

This paper provides a set of criteria that, if satisfied by an AspectJ program
transformation, ensures that it will preserve program behavior. These criteria,
described in the following section, are based on a system of constraints that
builds on existing work in refactoring [Opd92]. While many of these constraints
can be satisfied outright, some require special analyses and modifications, which
are described in Section 4. Following that, we put these constraints to the test by
extending known Java refactorings to AspectJ and developing new, AOP-specific
refactorings.

2 An Overview of AspectJ

AspectJ [KHH+01, Tea03] is an aspect-oriented language based on Java. AspectJ
supports two mechanisms for describing crosscutting features: static transforma-
tions, known as introduction; and dynamic invocation of code, known as advice.
To encapsulate the various parts of a crosscutting concern, AspectJ adds to Java
the aspect construct, which functions like a class but may also contain advice
declarations.

Introduction may declare new members on classes (inter-type declaration) or
alter inheritance relationships. For example:

public int Foo.add3(int i) { return i+3; }

This declaration would create a method add3(int) as if it had been declared
inside the class Foo, but may be written in any aspect where Foo is visible.
Another kind of static introduction allows modifying the class hierarchy. Specif-
ically, if a type t is declared to extend (or implement) supertype s, an aspect
can declare that the type t should instead extend (or implement) the type s′,
provided s′ is a subtype of s. (Several other static metaprogramming constructs
exist in AspectJ but are not covered in this paper.)

A program’s control flow can be altered using advice, which causes a block of
code to be invoked before, after, or around (in place of) a well-defined event in
program execution. These events, called join points, include method calls, object
or class initialization, exception handling, and field reads and assignments.

Advice is parameterized with a pointcut, which denotes a set of join points.
For example, the following advice declaration logs calls to a method servePage()
in class WebServer:

Method patternPointcutAdvice

void after(): call (void WebServer.servePage()) {

 System.out.println ("Called servePage");
}

In the example above, the advice follows all calls to a specific method. It is
also possible to use patterns when defining a pointcut. For example, if we have

several overloadings of the servePage method, we could log all of them with the
following advice:

void after(): call(* WebServer.servePage(..)) {
System.out.println("Called servePage");

}

Here, the * matches any return type, while the .. in the argument list
matches an argument list of any length and with any parameters. The pat-
tern mechanism is quite powerful; this example just shows some specific uses of
it.

Code within the advice body may also access a variety of information about
the join point, such as method arguments.

3 A Framework for Refactoring

The first major work on refactoring in object-oriented languages was William
Opdyke’s 1992 Ph.D. thesis [Opd92]. Opdyke presented a number of fundamental
refactorings, argued to be behavior-preserving based on a set of constraints. He
then defined more complex and task-specific high-level refactorings by composing
fundamental refactorings in a variety of ways.

Since it is in general undecidable whether two programs have the same be-
havior, no set of constraints can identify every behavior-preserving transforma-
tion. Instead, we choose constraints that balance the flexibility to support useful
changes with clearly-stated, simple requirements. The constraints we use are de-
rived directly from Opdyke’s work with updates for Java semantics. They fall
into three categories:

1. Language requirements. A refactoring must not cause rules of language
syntax and semantics to be violated. In addition to obvious considerations
of syntax, a number of special situations must be avoided, such as
– name conflicts
– subtyping violations
– method signature conflicts
– type safety violations

These particular situations are listed because they are common pitfalls of
transformations involving moving, renaming, or otherwise altering the dec-
laration of a class, method, field, or variable.

2. Preserving subtype relationships. We restrict our transformations to
those that preserve subtyping relationships between classes and overriding
relationships between methods. This guarantees that dynamic binding re-
solves to the same methods before and after a refactoring, limiting the effects
of a change upon subtypes. In particular:
– A class that implements any interfaces or abstract classes should con-

tinue to satisfy the requirements imposed by its interfaces or abstract
superclasses after refactoring.

Note that it is possible to move a method to a superclass or subclass in
some cases while honoring this constraint. For example, if a class C defines a
method M and its superclass neither defines nor inherits a method with the
same signature as M , moving M to the superclass still preserves subtype
relationships.1 On the other hand, if C inherits a method with the same
signature as M , it cannot be moved to C because it would then change
which method is dynamically bound when M is called on an object whose
type is C.
To preserve subtype relationships, it is sometimes necessary to make non-
local changes when carrying out the refactoring. In particular, if a method
signature defined in a supertype is changed, the refactoring must also prop-
agate this change to overriding methods in subtypes. For example, if a refac-
toring renames a method, all overridings of that method must also be re-
named. Furthermore, the new name cannot cause any name or method sig-
nature conflicts in any subclass.

3. Preserving semantic equivalence. Alterations to the program must be
limited to those that preserve the semantics of the altered parts. Opdyke
identified the following as behavior-preserving changes:
(a) Expressions can be simplified.
(b) Dead (unreachable) code within a method can be removed.
(c) Unreferenced variables, methods, and classes can be added or removed.
(d) A variable’s type can be changed, as long as each operation referenced on

the variable is defined equivalently for its new type, and all assignments
involving that variable remain type safe.

(e) References to a field or method can be replaced with references to other
fields or methods that are equivalently defined. If two variables are known
to refer to the same object (decidable in limited cases), or if two methods
have equivalent bodies (equivalent code and variable references), refer-
ences to one can be replaced with references to the other.

4 Behavior Preservation in AspectJ

With aspect-oriented constructs, program elements declared outside a class can
affect its structure and execution. Thus when aspects are present in a program,
our refactorings must preserve these AOP semantics in ways analogous to the
preserved OO semantics. We first look at the straightforward extensions of the
constraints to traditional programming constructs used in aspects. Then, we
examine the more interesting issue of how the new programming constructs
used in AspectJ further constrain refactoring.

4.1 Effect of Aspects on Existing Constraints

Language Requirements The first consequence of allowing AOP constructs is
that our language requirements are extended. The three main AspectJ features—
1 Of course, the refactoring might fail for other reasons, such as referencing an instance

variable declared in C.

inter-type member declarations, declaration of new inheritance relationships, and
advice—each have several effects on language requirements.

Inter-type member declarations, which can function exactly like local dec-
larations in a target type, can be declared in any aspect. This affects the re-
quirements that members of a class have unique names and signatures, as both
introduced and local declarations need to be checked for conflicts.

Aspects can also declare new inheritance relationships by declaring a class to
implement an interface or by assigning it a new superclass. (The new superclass
must be a subclass of the original superclass.) These declarations must be taken
into account when changing inheritance relationships in a refactoring, as the
language requirement that each class must have one direct superclass that is not
its subclass may be violated. For example, a class’s supertype could be changed
in a way that conflicts with an introduced supertype.

Subtype Relationships Changes to methods introduced by aspects must also
be analyzed with respect to their relationship to subtypes so that overriding
relationships of methods are maintained. Also, if an aspect changes a class’s su-
pertype, this must be taken into consideration when evaluating refactorings that
modify non-private class members to be sure that the subtyping relationships
are preserved.

Semantic Equivalence Aspects provide a new programming construct whose
code may be refactored and whose code must be examined for semantic equiv-
alence. Thus, the same refactorings possible for class code are also possible for
the code in aspects: expressions can be simplified, dead code can be eliminated,
etc.

An additional requirement is that the code in aspects must be examined for
references to classes, methods, and variables to be sure that code is unreferenced
before a refactoring can delete it.

4.2 A New Constraint: Pointcut Pattern Equivalence

Advice poses a special challenge in refactoring, because, to preserve behavior,
advice must apply at semantically equivalent join points before and after refac-
toring. Some pointcuts, such as call, get, and set, are statically determinable:
given full source code, we can identify exactly where all appropriate method
calls and field accesses occur. Other pointcuts, however, cannot generally be de-
termined statically. These include cflow, cflowbelow, if, and some cases of
this, target, and args. It seems intuitive that a refactoring should ensure each
pointcut is left with either the same join points or semantically equivalent join
points to those it contained before the refactoring.2 Thus one way to argue that
2 In some refactorings, such as Extract Method (Section 5.2), the locations in code

that correspond to specific join points may change. In these cases it is necessary to
take extra precautions to ensure that semantic equivalence can be preserved.

a refactoring is behavior-preserving with respect to advice is by showing that
the meanings of pointcuts are preserved.

Another possibility, however, is to present the argument in terms of the pat-
terns used in the pointcut expression: if the patterns match semantically equiva-
lent program elements, then the pointcut will match semantically equivalent join
points. This is a stronger requirement than simply that the pointcut contain an
equivalent set of join points, because while individual patterns may each match
many elements, the resulting pointcut could be small or empty. For instance, the
pointcut

call(public int Foo.getLength())

implies the following dependencies at the pattern level:

– a method called getLength,
– with no arguments,
– in a class called Foo,
– returning an int, and
– declared to be public.

If we require a refactoring to preserve the set of program elements that the
type pattern matches, we will need to change the pointcut if the public int
Foo.getLength() method is renamed. On the other hand, if we require a refac-
toring to preserve the set of join points, it is only necessary to change the pattern
if the method is actually called.

While pattern equivalence is a stricter condition, it offers some advantages.
First, the exact elements that match a pattern can always be determined stati-
cally (given complete source code), and indeed quite simply.

Second, it seems intuitive that the type pattern itself is a reference to a
program element. While it is not necessary to modify the pattern to preserve
the behavior of the program if the aforementioned getLength method is never
called, it does not preserve the intentions of the programmer, who may not be
certain if the method is called or not. By updating the pattern as part of the
refactoring, we can preserve both semantic equivalence of the program and the
programmer’s intentions.

Thus, we add a fourth constraint for behavior preservation of AspectJ pro-
grams:

4. Preserving pointcut pattern equivalence. A refactoring must ensure
that all pointcut patterns match equivalent program elements before and
after the change. (This may require the pointcut patterns to be modified as
part of the refactoring.)

In general, if a program element matches a pattern before applying a refac-
toring, it should continue to match after refactoring. If the element is changed
in a way that causes it to no longer match, we must modify the pattern to
ensure that it will match. Conversely, if a program element does not match a
pattern before applying a refactoring, it should still not match after applying

the refactoring. This may again require us to modify the pattern to avoid a new
match.

There is a simple, general solution to this problem. Suppose we start with a
pattern X,

– if we want to add an element, we synthesize a pattern p for that element,
and replace X with X || p; or

– if we want to remove an element, we synthesize a pattern p for that element,
and replace X with X && !p.

This technique is simple—all we need is the ability to synthesize a pattern that
selects exactly the element to add or remove, and the union, intersection, and
negation operators on patterns. A pattern that selects exactly one element is
easy to generate by using a fully-qualified name and signature.

Unfortunately, AspectJ syntax allows the set operators only within type pat-
terns. That is, we can write

staticinitialization(Foo || Bar)

to add the type Bar to the type pattern Foo. But if we want to add a method
bar() to the method pattern void SomeClass.foo(), we cannot write

call(void SomeClass.foo() || void SomeClass.bar())

(this is a syntax error). To work around this problem, we can make the following
change instead:

call(void SomeClass.foo())
⇓

call(void SomeClass.foo()) || call(void SomeClass.bar())

This is an example of a general technique. That is, if we have a pattern
X appearing in a pointcut pc, and we want to achieve the effect of adding or
removing a certain program element e from the set matched by the pattern, we
can perform one of the following replacements. To add the element matched by
pattern a:

pc(X) =: pc(X) || pc(a)

To remove the element matched by pattern a:

pc(X) =: pc(X) && !pc(a)

In these replacements, the set operations in use apply to the pointcuts them-
selves, but the effect is equivalent to modifying only the pattern.

5 Existing Refactorings Revisited

We now turn our attention to existing refactorings commonly used in object-
oriented programs and consider how aspects impact those refactorings. Our
approach is to use the constraints described in Sections 3 and 4 to guide the
identification of preconditions under which the refactoring may be applied and
the actions that are taken to apply the refactoring.

5.1 Rename a Variable

Renamning a variable, although a very basic refactoring, touches upon many
unique challenges that aspect-oriented languages impose on refactorings. In Java,
a variable can be renamed by changing its declaration and all references. The
preconditions to this renaming are:

1. The new name does not conflict with an already existing variable in the same
scope (including in subclasses if the variable is an inherited field), and

2. The new name will not cause the variable to be shadowed in any place where
it is currently referenced.

In AspectJ, we must introduce the following additional preconditions if the
variable being renamed is a field:

3. q3 The new name does not conflict with a field introduced into the same
type (or its subtypes) from an aspect.

Precondition 1 ensures that language requirements are honored. Precondi-
tion 2 prevents the case where changing a variable reference to use the new
name would actually cause it to refer to a new variable, thus changing program
semantics.

Precondition 3 is a straightforward extension of condition 1 to encompass
AspectJ language rules. Because a field introduced into a class from an aspect
functions equivalently to a field declared in the class itself, introduced fields must
also be checked for name conflicts.

Assuming the renaming would not violate these preconditions, we now con-
sider the actions that would be taken to implement the refactoring:

1. The declaration of the variable and all references to the variable are changed
to use the new name.

2. q If a field pattern matched this field before renaming and does not match
afterwards, it is extended to match.

3. q If a field pattern did not match this field before renaming and does match
afterwards, it is narrowed to avoid matching.

Action 1 is the normal action to apply this refactoring in a Java program.
Actions 2 and 3 ensure pointcut pattern equivalence. Patterns cannot refer to
local variables, so only fields are affected. Consider this example where we want
to rename the field x to y in class Foo:

class Foo {
public int x;
public void setX(int newX) { x = newX; }
public int getX() { return x; }

}
3 The cutting scissors symbol (q) denotes a precondition as particularly concerned

with AOP behavior preservation constraints.

Suppose that the Java preconditions are met; that is, we can safely rename the
declaration of x and all references. In AspectJ, however, we might have an aspect
such as:

aspect FooListening {
after() : set(Foo.x) {
// notify some listeners
...

}
}

Before renaming, the field pattern used in the advice, Foo.x, referred to a field
that it no longer refers to after refactoring. We want this pattern to include the
field now called y, so according to the general technique described in Section 4.2,
the pointcut becomes:

set (Foo.x) || set (Foo.y)

Thus after AspectJ-safe refactoring the code is:

class Foo {
public int y;
public void setX(int newX) { y = newX; }
public int getX() { return y; }

}

aspect FooListening {
after() : set(Foo.x) || set (Foo.y) {
// notify some listeners
...

}
}

In this example, the changed pointcut— set (Foo.x) || set (Foo.y
)— seems overly complex, because there is no longer a field Foo.x. The reason
that we expand, rather than directly alter, the pointcut is because expansion
is a more general solution. For example, if the pointcut had originally been
set (*.x), transforming the pattern to set (*.y) would change program
behavior if there were any other fields in the program named x or y. In the
case above, simplifying the pointcut to set (Foo.y) can be considered an
additional refactoring.

5.2 Extract Method

The Extract Method refactoring entails replacing lists of statements that occur
repeatedly in a program with method calls. It is an example of a high-level
refactoring, one that composes a number of other refactorings to accomplish a
more specialized purpose. The two refactorings being composed first create a

new method and then replace one or more statement lists with a call to the new
method. For example, suppose our class contains several lines of code that are
used to reinitialize instance variables in several places:

public void m () {
count = 0;
list = new Vector();
...

}

The Extract Method refactoring allows us to define a new method, init, with
the repeated statements as its body and replace those statements with a method
call, so we get:

private void init() {
count = 0;
list = new Vector();

}

public void m() {
init();
...

}

As in plain Java, the method we create as part of Extract Method contains
the same statements we want to extract, and accepts any internally referenced
variables not in the scope of the method declaration as parameters. Similarly,
the statement lists are replaced with method calls in the same way as in plain
Java. However, aspects affect the refactoring by imposing additional precondi-
tions on when the refactoring can be applied. In particular, we need to ensure
that any advice that applied to the inline statements applies equivalently to the
statements in the extracted method. We give an example here and a more precise
description of these preconditions below. Suppose that we have advice using the
following pointcut:

set (Foo.count)

In this case, the refactoring shown above would be allowed since the setting of
the count variable served as a join point both in the statement list and in the
method. Now, consider a slightly different pointcut:

set (Foo.count) && within (Foo.m ())

In this case, we would want to prohibit the replacement of the statements in
m with a method call to init because the assignment within init is not in the
pointcut while the assignment in m is. Allowing the refactoring would cause the
advice to no longer be invoked where it once was, thereby causing a change in
behavior.

Since this is a high-level refactoring, we analyze it by examining the compo-
nent refactorings. The preconditions for the Create Method refactoring are:

1. The lines of code change at most one local variable.
2. The new method will compile as a member of the target class.
3. If the new method will overload an existing method (either in the target

class, in its subclasses, or one statically introduced into the target class or
subclasses), it must either be more general (thus not capturing any calls that
would have invoked the existing method) or more precise and semantically
equivalent (e.g. identical) to the method it overloads.

4. If the target class has an inherited method that will be overridden by the
new method, either that method is unreferenced on the target class and its
subclasses, or the new method is semantically equivalent to the method it
overrides4. Changes to the class hierarchy caused by aspects must be taken
into consideration as well when evaluating this precondition.

The first precondition guarantees that we can create the method. The second
precondition implicitly guarantees no signature conflicts with current locally
declared or introduced members of the class. The third precondition guarantees
valid overloading. The final precondition guarantees that even if the new method
overrides an inherited method, program behavior is preserved.

After the Create Method refactoring is applied, the next step in Extract
Method is application of Replace Statement List with Method Call. Here we re-
place a statement list L in a method m with a method call mc. The following
preconditions are required:

1. The called method, mc, is visible from the calling method, m.
2. If mc is not private, all subclasses that inherit m also inherit mc or the

method that overrides mc is semantically equivalent to mc.
3. The call to mc is semantically equivalent to L, i.e. their abstract syntax

trees are the same, up to variable renaming, and they reference semantically
equivalent items outside their scopes.

4. q The method mc is not matched by any method patterns. (This pre-
cludes new invocation of advice parameterized by call, execution, and
withincode pointcuts.)

5. q If any statement in L includes an assignment to or read from a field
matched by a field pattern used in a set or get pointcut, that pointcut is
not intersected with a within or withincode pointcut.

6. q If any statement in L includes a method or constructor call matched by a
method or constructor pattern used in a call or execution pointcut, that
pointcut is not intersected with a within or withincode pointcut.

The first three preconditions ensure that the called method will behave equiv-
alently to the statements it replaces. The rest of the preconditions are AspectJ-
specific, and guarantee that this refactoring does not change which points in
program execution cause advice to be invoked. To preclude invoking advice on
4 It is not always possible to determine whether a particular method in a given class

is referenced because of dynamic method dispatch. In many cases, however, it is
possible to determine conservatively that a method is not referenced.

mc itself, we require that it is not matched by any method patterns. Further,
we do not want our use of the method call to cause invocation of any advice
not already invoked in our statement list. Similarly, we do not want our use of
the method call to preclude invocation of advice that was invoked by a state-
ment in the list. The only way, aside from the dynamically-determined cflow
and cflowbelow pointcuts, to achieve this kind of limitation in a pointcut is
to use within or withincode pointcuts. By intersecting (&&) these with other
pointcuts, it is possible to constrain advice executions to join points occurring
in a specific set of types or methods. We cannot, in general, maintain semantic
equivalence of pointcuts that use within or withincode by generalizing or re-
stricting the within clauses. For example, if we attempted that with our earlier
example, we would end up with a pointcut:

set (Foo.count) && (within (Foo.m () || within (Foo.init ()))

This would be a valid refactoring of the pointcut only if the init method was
only called from m. Rather than creating more complicated preconditions and
defining the corresponding actions to fix these pointcuts to include or exclude
specific join points, we simply require as a precondition that they do not apply.
In general, refactorings that change the static location of a join point cannot
be applied if a pointcut depends on these static locations by using within or
withincode expressions.

The actions taken by this refactoring are the same as for the comparable
object-oriented refactoring and involve creating the method, moving the state-
ments into the method, introducing necessary local variable declarations and a
return statement if necessary, and replacing the original statements with a call
to the method. No additional actions are required due to aspects.

6 New AOP-Specific Refactorings

Now, we examine some refactorings that would be useful for aspect-oriented
programming.

6.1 Move Local Member Declaration to Aspect

This simple refactoring removes a field or method declaration from a class or
interface and moves that declaration into an aspect. From the aspect, introduc-
tion is used to add the member into the class it was taken from. For example,
a method public String toString() { ... } in a class Foo can be declared
from within any aspect as:

public String Foo.toString { ... }

The refactoring has only one precondition:

1. The member must be public.

Since the introduction is a static transformation, the introduced declaration
is always legal if the local member declaration is legal. The only additional
requirement, then, is that the introduction is possible. This necessitates that
the member be declared public, because introduction of a protected member
is not allowed by AspectJ and an introduced member declared private would
mean private to the containing aspect, not to the target class.

The action is to remove the declaration from its class and move it to the
desired aspect. The name of the item must be qualified with the class name.

6.2 Generalize before or after advice to around Advice

If a programmer wants to declare advice behavior around a pointcut currently
referenced in before or after advice, it is easy to change the advice declaration
into an equivalent around advice. The action is to change the advice type to
void around and

– in the case of before advice, add a proceed() statement at the end of the
advice body;

– in the case of after advice, add a proceed() statement at the beginning of
the advice body.

There are no preconditions for this refactoring.

6.3 Extract Disjoint State into Aspect

Like Extract Method, this a high-level refactoring which composes a number
of other refactorings to accomplish a more specialized purpose. In this case,
we apply the Move Local Member Declaration to Aspect refactoring to several
members in order to separate out the declarations of peripheral properties of the
class. If the set of members of the class is M , we first select a set of members
D ⊆ M such that:

∀d ∈ D : ¬referencedFrom(M \ D, d)

and
∀m ∈ M \ D : ¬referencedFrom(D,m)

where referencedFrom(X, y) is true if and only if a member in the set X references
the member y.

In short, we choose a set of members that neither refers to nor is referenced
from the remaining members. Although M is such a set, the intention is of course
to move a proper subset of the class members, not all of the class members.

Example here: memoization won’t work; it’s not disjoint. This is really some-
thing where two unrelated things are stuck into one class. Why would this be? I
have to think about it some more.

6.4 Extract Interface Implementation into Aspect

The purpose of the Extract Interface Implementation into Aspect refactoring
is to create a new aspect that contains the variables and methods that a class
contains for the sole purpose of implementing a particular interface. Since this
refactoring involves only moving parts of a class to an aspect for static introduc-
tion, there are no preconditions.

The actions taken by this refactoring are more interesting. Given the name
of the interface whose implementation should be extracted, the actions involve:

1. Moving the members that implement the interface to the new aspect. We’ll
call this set of members M .

2. Moving additional members of the class that are referenced by members in
M but are not referenced by members outside of M and are not members of
the class to satisfy some other subtyping constraint. As more members are
moved to the aspect, we also examine which members they reference.

3. Removing the implements clause from the class declaration.
4. Adding a declare parents statement to the aspect to maintain the sub-

typing relationship.

The work on creating refactorings that are specific to aspect-oriented pro-
gramming is just beginning. A tool that offered a rich set of such refactorings
would make an excellent platform for transitioning existing Java programs into
AspectJ.

7 Related Work

Exploring the interactions between AOP and refactoring is a relatively young
research area that has recently become a priority for AspectJ [Kic01]. Hanenberg
et al. [HOU03] offer several updated OO refactorings and new AOP-specific
refactorings that are not considered in this paper. They are also developing a
refactoring tool for AspectJ. Their transformation constraints adopt only the
more general requirement that pointcut meanings are preserved, rather than
exploiting the pattern technique described here.

Hanneman, Fritz, and Murphy [HFM03] are also examining refactoring for
AspectJ. While our goal has been to provide behavior-preserving transforma-
tions, as is the goal in an object-oriented language, their goal is to maintain
programmer intentions rather than necessarily preserving behavior. The follow-
ing example highlights the difference. Suppose there is a pointcut defined as
call (public * *(..)). This would match all public method calls. Now sup-
pose a public method is refactored to be private. To preserve behavior, we would
claim that one effect of the refactoring is to change this pointcut to && in the
method that just became private. Hanneman’s approach says that while this
may preserve behavior it might violate the intention of the aspect since the as-
pect’s purpose may be to only apply to public method calls, for example. Of

course, it is not possible, in general, to discern the programmer’s intent. Han-
neman’s solution is to engage the user in an interactive dialogue to determine
their intent. This raises very interesting issues. Intuitively, it seems that when a
pointcut refers to a specific program element, it is probably the programmer’s
intent to also modify the pointcut when a refactoring affects the program ele-
ment. On the other hand, when the pointcut uses an expression with wildcards,
as the example above, it seems more likely that the refactoring should not pre-
serve pointcut equivalence to capture the programmer’s intent, thus violating
behavior preservation.

8 Conclusions and Future Work

The framework presented here forms a basis for judging whether proposed refac-
torings are behavior-preserving in AspectJ. It is the basis for the refactorings
presented in Sections 5 and 6 as well as additional refactorings we have explored
[Rur03]. While we have found it helpful in formulating refactorings, a major area
of future work is to build a refactoring tool that can apply these refactorings to
AspectJ programs to discover when they facilitate the migration from pure Java
to AspectJ and to what extent they provide the type of refactoring support an
AspectJ programmer most needs.

References

[Fow00] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 2000.

[Goo03] Google Web Directory. Refactoring Tools. Website, 2003. Avail-
able at http://directory.google.com/Top/Computers/Programming/
Methodologies/Refactoring/Tools/.

[HFM03] Jan Hannemann, Thomas Fritz, and Gail C. Murphy. Refactoring to as-
pects — an interactive approach. In Proceedings of the 2003 OOPSLA
Workshop on Eclipse Technology Exchange, October 2003.

[HOU03] Stefan Hanenberg, Christian Oberschulte, and Rainer Unland. Refactoring
of aspect-oriented software. In Net.Objectdays, Erfurt, Germany, Septem-
ber 2003.

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm,
and William G. Griswold. An overview of AspectJ. In European Conference
on Object-Oriented Programming, Budapest, Hungary, 2001. Springer.
Available from http://eclipse.org/aspectj/.

[Kic01] Gregor Kiczales. Aspect-oriented programming–the fun has just begun. In
Workshop on New Visions for Software Design and Productivity: Research
and Applications, Vanderbilt University, Nashville, Tennessee, December
13-14 2001.

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, 1992.

[Rur03] Shimon Rura. Refactoring aspect-oriented software. Undergraduate The-
sis, Williams College, 2003.

[Tea03] The AspectJ Team. The AspectJ Programming Guide, 2003. Available
from http://eclipse.org/aspectj/.

