
A Structural Approach to the Maintenance of
Structure-Oriented Environments

David Garlan
Charles W. Krueger
Barbara J. Staudt

Carnegie-Mellon University
Dcpartmcnt of Computer Science

Pittsburgh, PA 15213

Abstract
A serious problem for programming environ-

ments and operating systems is that existing
software becomes invalid when the environment or
operating system is replaced by a new release Un-
fortunately, there has been no systematic treatment
of the problem; current approaches are manual, ad
hoc, and time consuming both for implementors of
programs and for their users. In this paper we
present a new approach. Focusing on a solution to
the problems for structure-oriented environments,
we show how automatic converters can be generated
in terms of an implementor’s changes to formal
descriptions of these environments.

1. Int reduction
A serious problem for programming environ-

ments and operating systems is that existing
software becomes invalid when the environment or
operating system is replaced by a new release. (In
the widespread conversion from Version 4.1 of BSD
UnixTM to Version 4.2, for example, any program
that made use of the file directory structure became
obsolete.) At the very least, work must partially halt
while conversion takes place: programs are
modified and recompiled and old data represen-
tations are converted to new. Users are burdened
with a period of instability and loss of functionality

Research on Gandalf is supported in part by the United
States Army, Software Technology Development Division of
CECOM COMMIADP, Fort Monmouth, NJ. and in part by
ZTI-SOF of Siemens Corporation, Munich, Germany.

Permission IO copy without kc all or part of this matcri;h is gmntrd provided
that the copies WC not made or distributed I’m direct commcrciat advanwgc.
the ACM copyright notice and the title of the publication and its drlr appear.
and noticc is given that copying is by permission of the Association ii~r
Computing Machlncry. 1‘0 copy othcrwisc. or IO rcpuhlish. requires a ke and/
or specilic pcrmiwon.

01986 ACM 0-89791-212-8/86/0012/160 750

for inadequate conversions. Implementors of
programs arc burdened with the tasks of locating all
programs to be changed and then, typically,
manually modifying old code on a case-by-case
basis. Consequently, users and implementors are
faced with a dilemma: stability can be achieved by
ignoring successive releases, in which case the en-
vironmcnt will not meet the evolving needs of its
users: or change can be allowed, at the cost of a time
consuming process of conversion.

Structure-oriented environments,2 such as
[8,4,9, lo], are a class of programming environ-
ment for which these problems are particularly
severe. Structure-oriented environments are usually
generated from a formal description that is
processed and linked with a collection of common
facilities. The formal description, or grammar, is
typically a variant of BNF. It characterizes the form
of programs. which are represented as abstract syn-
tax trees. The common facilities typically support
the creation, modification, and storage of programs
in the running environment. When the grammar of
a structure-oriented environment is changed in any
but trivial ways, existing trees representing valid
abstract syntax under the old grammar may not be
correct under the new grammar. At early stages of
environment prototyping it may be possible to
simply discard the old trees. However, in practical
settings where users have come to depend on the
programs created in the old environment, a sudden
announcement that all existing trees are no longer
valid will not be greeted with enthusiasm.

For most operating systems and programming en-
vironments the situation is mollified by the fact that
major evolutionary changes may be rare and may

2w e take the term “structure-oriented environment” to be
synonymous with “syntax-directed environment”. “languagt?
bPscd environment”, “stnxture editor-based environment”, de.

160

affect only a small number of programs. For
structure-oricntcd cnvironmcnts, however, changes
tend to bc much more frequent and. as we have
mcntioncd, affect virtually all existing program
trees. Changes occur more frcqucmly bccausc users
wish to take advantage of the ability to easily
generate new environments from formal dcscrip-
tions. Improvements to the environment - cithcr
through the introduction of new toots or the en-
hancemcnt of existing tools - usually require
changes to the grammar that characterizes program
trees. (For some examples see [S].)

There has been virtually no research on systematic
solutions to these problems. This is as true for
general programming environments as it is for
structure-oriented environments. Current ap-
proachcs are either blatantly ad hoc, or are based on
the idea of rcparsing textual rcprcsentations of exist-
ing program trees. While the latter approach may
be adequate for some purposes, it has a number of
problems, itcmizcd later, that make it unsuitable as
a general solution.

In this paper we present a new approach. Focus-
ing on a solution to the problems for structure-
oriented environments, we show how automatic
converters can be generated in terms of an
implementor’s3 changes to the formal descriptions
of these environments. In the following sections we
describe the design and implementation of an en-
vironment, called TransjbmtGen, in which an im-
plementor can make structured changes to the for-
mal description of a structure-oriented environ-
ment The output of TransformGen is a new gram-
mar together with a transformer, which takes in-
stances of trees built under the old grammar and
automatically converts them to instances of trees
that are legal under the new grammar. We then
discuss the practical effect this approach has had in
coping with changes to a large structure editor en-
vironment in use at a number of educational and
industrial sites. In conclusion we briefly indicate
how these techniques might be applied to solve
similar problems for programming environments
and systems in general.

%?I roughout this paper we refer to the designer, builder, and
maintainer of an environment as an implemenror.

2. The Transformational Approach
To illustrate the problems associated with chang-

ing the grammar that describes a structure-oriented
environment, consider Figure 2-1. Here a
MODULE is described as an entity having as one of
its components a single IMPLEMENTATJON.
Suppose that after having used an environment
gencratcd from this description, we decide to en-
hance the system by allowing a module to have a
collection of implcmcntations, each implementation
distinguished by a version number. The grammar
might then look as pictured in Figure 2-2.

MODULE ::= MOD-NAME INTERFACE IMPLEMENTATION
attribute is-used: &o/eon

MOD-NAME : : = iden@er

INTERFACE ::= list of EXPORT-ITEM

IMPLEMENTATION ::= . . .
. . .

A typical grammar consists of a collection of BNF-like produc
lions that specifies the abstract syntax of a programming environ-
ment. Here, for example. MODULE has three components
whose types are given by the productions MOD-NAME, IN-
TERFACE, and IMPLEMENTATION. Productions may have
associated attributes such as the ‘is-used’ attribute of MODULE

Figure 2-1: Grammar foraModule Description
Environment - Version 1

Any stored instance of a MODULE constructed
from the environment based on the old grammar
will now be obsolete since the new environment ex-
pects VERSIONS in the place that the old environ-
ment has an IMPLEMENTATION. What is
needed is a way to transform old instances of
MODULEs into the new format. In the example of
Figures 2-l and 2-2 we would like to add an ad-
ditional level of structure to the grammar to
represent the module’s sequence of versions. To
transform existing trees we would insert the old IM-
PLEMENTATION of a MODULE as the first com-
ponent of a sequence of VERSIONS, perhaps
giving it a default VERSION-NUMBER in the
process. Additionally, we would move the old ‘is-
used’ attribute of the old MODULE to be an at-
tribute of the new IMPLEMENTATION.

161

MODULE ::= MOD-NAME INTERFACE VERSIONS

VERSIONS : : = list of VERSION

VERSION ::= VERSION-NUMBER IMPLEMENTATION

VERSION-NUMBER : : - integer

IMPLEMENTATION ::=
attributQ is-used: bookan

. . . .

In this version of the grammar tie description of MODULE has
been changed to allow it to have multiple versions. Each vetion
has an associated version number. The old ‘is-used’ attribute of
MODULE is now an attribute of the IMPLEMENTATION.

Figure 2-2: Grammar for a Module Description
Environment - Version 2

One common approach to the problem is il-
Iusuated by the three stage process pictufed in
Figure 2-3. First, a tree is “unparsed” to a textual
form. Next, changes are made to this textual
representation to produce a textual form that is legal
for the new environment, Finally, the modified text
is repassed into a new tree by a parser that can con-
vert text to abstract syntax trees that are valid under
the new grammar.

tree1 n -w--w 3 A tree2

text1 cl t-y--+o toxtz

Figure 2-3: The Transformation Process

There are a number of problems with this ap-
proach:

l A narser must be builf, This voids one of the
primary attractions of structure-oriented en-
vironments, namely that they can be built
without the overhead of producing a parser.

l A substantial manual effort mav be involved
in transformino; text, While some progress has
been made in techniques for producing

automatic transformers for text [7], currently
thcsc tcchniqucs arc not powerful enough to
handle the range of transformations needed in
this context.

l Information mav be lost This typically occurs
when attributes arc used to store information
that cannot bc directly regenerated From a
canonical textual representation. For example,
in systems such as [4, 1.31 an attribute can be
used to store such things as a “change log”.

l Conversion is ad hoc. There is no direct en-
forceable correspondence between the
changes made to a grammar and changes that
occur in the translation process.

Our alternative approach is illustrated by the
dotted line in Figure 2-3. In this approach existing
trees produced by the old environment are directly
converted to trees that are valid in the new environ-
ment. No parser is needed, no human need be in-
volved in the translation process, and the transfor-
mation can be quite efficient since no intermediate
forms are involved. Dut in order for such a solution
to be practical it must be possible (a) to generate
such a tree-to-tree transformer automatically or
semi-automatically, and (b) to augment the
automatic transformation methods to take care of
special cases. The first requirement is necessary to
reduce the cost of producing such a transformer,
and the second because there are classes of transfor-
mations that cannot be automatically generated or
that may not be handled efficiently by automatic
techniques.

In the following sections we will show how these
two requirements can be met. The basic idea is that
we provide an environment (called TrunsformGen
for “Transformer Generator”) in which an im-
plementor makes smcrured changes to an existing
grammar. Any number of changes can be made and
in any order. When all the changes have been
made, TransformGen produces a table of transfor-
mation rules that can be interpreted to convert old
representations to new. The implementor can then
augment the automatic mechanisms in three ways:
by directly modifying the tables, which are written
in a human-readable format., by writing transfor-
mation routines to perform tricky transformations,
or by adding a set of ucrion routines that are invoked

162

in a post-processing phase when the transformer has
completed its work.

While little has been written about the main-
tenance of structure-oriented environments, the ap-
proach described here most closely rcscmbles the
work of Balzer dealing with the maintenance of
knowledge representation systems [2]. However,
unlike Balzer’s work, Transform&n allows mul-
tiple changes to be composed into one transfor-
mation pass of the database, deals with the more
tightly constrained type systems of structure-
oriented environments, can potentially incorporate
a much wider range of high-level changes, contains
hooks for arbitrary implementor extensions, and
does not require the overhead of associating with
each production type a set of pointers to all in-
stances of that production.

3. Requirements for a Tree
Transformer

The approach outlined above requires the ability
to interpret changes to a grammar in terms of the
effects of these changes on existing trees. Some
changes are trivial to interpret. For example, if the
implementor adds a new production to a grammar,
no transformation is required because existing trees
are not affected. Only slightly more complex is a
grammar change that adds a new component to a
non-terminal production. The required transfor-
mation must map components of the old production
to the appropriate locations in the new production,
leaving an empty placeholder for the new com-
ponent.

In the general case, grammar changes are not so
easy to interpret. The two fimdamental challenges
for implementing a transformer generator are
composubilifr and coverage. Composability refers to
the problem of representing the effects of arbitrarily
many grammar changes within a single transformer.
This becomes a significant problem when multiple
modifications are made to interacting productions.
To take a simple example, if an implementor adds a
new component to a production and later reorders
those components, the generated transformer must
be able to interpret the composition of the two
changes in terms of the original component list

Coverage refers to the ability of a transformer to
provide appropriate transformations for a type of
change in the environment description. In general it
is not possible for a transformer gcncrator to
provide complete coverage. This is true for two
reasons. First, given any grammar change, there
may bc scvcral possible ways in which to transform
existing trees so that they arc valid in the modified
grammar. Choosing the correct interpretation re-
quircs the ability to infer the implementor’s inten-
tions. As a simple example, suppose a production
goes through the following sequence of changes:

(1) x ::= Y 2
(2) X : : - 2

-- the original /inn

-- implementor deletes
Jirst componenl

(3) x ::= 2 Y -- implementor inserts
new second component

Is this sequence of operations really a deletion-
addition pair or does it represent a single reorder
operation? The choice will have a large effect on
the type of transformation generated. Second, a
transformer generator can only capture modifica-
tions that are made to the grammar itself. If seman-
tic processing is implemented by procedures outside
the grammar (such as daemons), changes to the
semantics cannot be recognized by the transformer
generator.

Since complete automatic coverage is not pos-
sible, it is essential to allow an implementor to sup-
plement the automatic mechanism to handle corn-
plex transformations and transformations associated
with semantic processing.

TransformGen is capable of automatically
dling the following types of grammar changes.

l Addition or deletion of productions
l Renaming of productions

han-

l Addition or deletion of components or at-
tributes of a production

l Reordering productions, or components or at-
tributes of a production

l Changing the type of the value associated with
a terminal node

0 Changing nonterminals into terminals

167

l Changing terminals into nontcrminals

An implementor can supplement the automatic
mechanisms to deal with more complicated changes
such as:

l Addition of structural levels
l Deletion of structural levels
l Changing semantic processing
0 Complex tree restructuring.

As complex transformations become well under-
stood they can be incrementally added to the
automatic repertoire of TransformGen.

4. The Generation of a Transformer
There are two major steps involved in the trans-

formation proecss. First, a transformer is generated
based on grammar changes made by an implemen-
tor. Second, the transformer is applied to existing
trees created with the old version of the grammar in
order to update them to the new version. This see-
tion describes the process of generating a trans-
former using the example introduced in Section 2.
In order to understand this process, the basic algo-
rithm used by a transformer is described first.

The transformation of existing trees involves a
top-down construction of a new tree. The contents
of the new tree are derived from the contents of the
old tree by applying derivation rules encoded in the
transformer. These derivation rules indicate how to
translate each production in the old grammar into a
production in the new grammar. An individual rule
indicates what production to use to construct a new
node, and how to recursively build each component
and attribute of the new node.4 The choice of rule
to apply is determined primarily by the production
used to construct the node in the old tree. Thus as
each node in the old tree is being transformed, the
rule base is consulted in order to perform the car
rect construction in the new tree.

4 Since attributes are clcsmibed via attribute gnmmus. the
same uansfoxmation mechanism an be applied to tmnsfonn
atlributetner

4.1. Transformation Tables
The editing commands of TransformGcn not only

modify the grammar specification. but also generate
a tree transformation table consisting of derivation
rules that reflect grammar changes. The table con-
tains one or more entries for each production in the
original grammar. Each entry consists of three
parts: a transformation on the production operator
itself, a transformation on each component of the
production, and a transformation on each attribute
of the production. For instance a production that
has not been modified would have an entry as
shown in Figure 4-l.

production operator: OPl
new self: OPI

component 1: Transform old component 1
component 2: Transform old component 2
. . .
attribute a: Transform old attribute a
attribute b: Transform old attribute b
*..

Figure 4-l: Table Entry for an
Unmodified Production

This would have the effect of translating every
instance of OPl to itself.

As in Figure 4-1, transformations often simply
specify a production in the new grammar and a
recursive transformation for each old component
and attribute. However in order to provide tmns-
formations that add structural levels to a tree, it is
necessary to specify a more complex subtree to
build. Consider the grammar changes between
Figures 2- 1 and 4-2.

MODULE ::- MOD-NAME INTERFACE VERSIONS

VERSIONS ::- list of IMPLEMENTATION

IMPLEMENTATION ::- . . .
pttributa is-used: bookn

I.....

Figure 4-2: Grammar for a Module Description
Environment - Intermediate Version

These grammar changes require the addition of a
structural level to existing trees allowing for the list

164

of 1MPLEMENTATIONs. The transformation
table entry is shown in Figure 4-3.

production operator: MODULE
new self: MODULE

component 1: Transform old component 1
component 2: Transform old component 2
component 3: VERSIONS -- Vserhenew

VERSIONS production
element 1: Transform old component 3

-- Old IMPLEMENTATION node
attribute is-used: Transform old

attribute is-used

Figure 4-3: Adding a Structural
Level to a Production

This entry will transform every old MODULE into
a new MODULE. The MOD-NAME and INTER-
FACE are placed in the same locations as in the old
tree. The third component of a new MODULE gets
its value by building a VERSIONS node and
making the IMPLEMENTATION of the old
MODULE be the first element of the VERSIONS
list. Note also that the is-used attribute now be-
comes an attribute of the IMPLEMENTATION
rather than the MODULE.

production operator: MODULE
new self: if oldnode.is-used then MODULE

-- Checks that the module t tad
component 1: Transform old component 1
component 2: Transform old component 2
component 3: VERSIONS

element 1: Transform old component 3
attribute is-used: Transform old

attribute is-used
eunt

Figure 4-4: Conditional Transformation

In some cases the implementor will not want
every instance of a production to be transformed
into the same new production. To allow for this
possibility, a condition may be attached to each
transformation table entry. The condition might be
used to compare the value of a terminal node to a
specific string, make queries concerning other nodes
in the original tree, or test attribute values. For
instance suppose in the example of converting
MODULES to contain multiple IMPLEMEN-
TATIONS we do not want to waste time transform-

ing MODUI.Es that are not used. Then we only
want to do the conversion when the is-used at-
tribute of a MODULE is true. This transformation
table entry is shown in Figure 4-4.

4.2. Composability
The composability problem described in Section 3

is overcome by encoding transformation table
entries in such a way that grammar changes can be
easily combined. As a grammar is being modified
there will typically be a scqucnce of changes that
can be made in a somewhat arbitrary order. At each
interrncdiatc step during the grammar modification
the transformation table must also be updated ap
propriatcly. However, the final transformation
table should be the same, independent of the order
in which the grammar changes were made. To bet-
ter understand the problem and solution it is useful
to think of the grammar modification process as
beginning in a star2 state, proceeding through a
series of operations that modify the cunenl state,
until the goal state is reached. The start state is the
old version of the grammar. The current state is any
intermediate version of the grammar. The goal state
is the new version of the grammar. The key to the
solution is in recognizing that the implementor is
always editing an intermediate version of the gram-
mar. The productions of this intermediate grammar
version are always encoded in the current state of
the transformation table. Therefore whenever a
change is made to a grammar production, the trans-
formation entries must be starched for all occur-
rences of the production operator name. The effects
of the production modification must be replicated at
each occurrence of the production operator name.5
Note that as in Figure 4-4 a production operator
name may occur within a component description.
By replicating the effects we are ensuring that the
actual transformation of existing trees can be per
formed in a single pass.

‘It is important to emphasize that a transformation entry
consists of a rule to vansform an operator. a set of rules to
transform the components, and a set of rules to transform the
attributes of the production. The production operator name
from the old grammar is specifically not a part of the entry. It is
simply the index into the transformation table. The result is that
the old production operator names never change. Only the
entries associated with those names are modified.

165

Consider the grammar changes bctwccn Figures
4-2 and 2-2. The associated change to the transfor-
mation tilblc must compose with the table shown in
Figure 4-4. The grammar change rcquircs that we

change our current understanding of VERSIONS.
To do this we search the transformation table for all
Occurrences of the VERSlONS production
operator. WC want to modify the first clcmcnt to be
a VERSION production. WC also want to give a
default value of 1 to the VERSION-NUMBER
component. Now the transformation entry for a
MODULE is as shown in Figure 4-5.

production operator: MODULE
new self: if oldnode.is-used then MODULE

component 1: Transform old component 1
component 2: Transform old component 2
component 3: VERSIONS

element 1: VERSION -- Use the new
VERSIONprcduction

component 1: VERSION-NUMBER with
value - 1

-- Use a default v&e of I
component 2: Transform old

component 3
attribute is-used: Transform old

attribute is-used

Figure 4-5: Composition of Modifications to
Related Productions

4.3, Coverage
Complete coverage of grammar editing requires

the assistance of the implementor. This assistance
can come in three forms: editing the transformation
table directly, writing transformation routines that
are invoked during tree transformation, and writing
action routines that are called during a postprocess-
ing phase. Direct editing of the transformation
table is most useful for grammar changes that in-
volve moving information to a different level of the
tree, supplying values for terminal nodes and at-
tributes, etc. These types of changes are expected to
be common, but difficult to describe in a way that
the transformer generator can understand. By edit-
ing the tables directly the implementor will still
receive the benefits of composition with later gram-
mar changes.

The major limitation of the transformation table
is that all constructions in the new tree must be

statically cxprcsscd as constant production names.
If a transformation cannot bc expressed in terms of
boolean conditions and constant productions nties
in the table. then a inorc powerful mechanism must
bc invoked to assist in tbc transformation. This ex-
tra power is needed for cases where, for example,
the user must bc asked to interactively choose how
to transform a node, or where the information
needed to select a production to construct is de-
pcndent on parts of the new tree that have not yet
been constructed. Such transformations can be
described in ARL, an imperative tree-oriented pro-
gramming language [ll]. This language is capable
of examining both the old and new trees and query
ing the user for advice. It is thus capable of per-
forming any conceivable tree transformation. The
disadvantage of a procedural approach is that com-
posability can no longer be guaranteed. It is there-
fore the implementor’s responsibility to ensure that
the transformation routines correctIy map from the
start state to the goal state, taking into account all
editing changes that affect the node in question. It
is possible to recursively call the transformer from a
transformation routine. Thus a tricky transfor-
mation can be applied to a node, and then its com-
ponents can be constructed using the table as be-
fore. The chief advantage of action routines in-
voked during a postprocessing phase is that they
have access to the completely transformed tree, and
thus can make changes to the tree based on its trans-
formed state. This should be most useful for recom-
puting attributes, such as symbol tables, that depend
directly on the tree.

5. Current Implementation
TransformGen has been implemented as an ex-

tension of the Gandalf structure-oriented environ-
ment generator system [S]. As it turned out, it has
been relatively easy to build the necessary tools as
simple extensions to existing facilities. The im-
plementation consists of two main components. The
first is the TransformGen environment itself. The
second is a grammar-independent transformation
engine that is linked with the generated transfer
mation tables to produce a tree transformer for a
particular set of grammar changes.

Within the TransformGen environment the itn-
plementor updates a grammar by making structural

166

changes to an existing grammar. In fact, Trans-
form&n is simply an cxtcnsion to the Gandalf Sys-
tcm grammar editor AlocGcn [6] that is used for
constructing grammars from scratch. The im-
plementation of TransformGen has changed
AlocGen from a simple structured editor into a
knowlcdgc-based editor. In AlocGen an editor
command resulted in a simple change to the gram-
mar maintained by AlocGcn. In TransformGen an
editor command results not only in the same simple
grammar change, but also in changes to the trans-
formation table.

For the most part, the user of TransformGen does
not need to be aware that a transformer is being
constructed. The user interface to TransformGen is
virtually identical to the user interface for AloeGen.
In fact, as long as the user applies commands for
which TransformGen knows how to build the
tables, the user interfaces are identical. If the user
applies a command which TransformGen cannot
fully interpret, the user is warned of the need to
manually edit the transformation tables before
proceeding with the change. In order to manually
edit the transformation tables, the user must change
from the normal AloeGen grammar editing view to
the TransformGen view. In this view, the transfor-
mation tables that have been constructed by Trans-
formGen are presented to the user. The formatting
of those tables is exactly as shown throughout this
paper. The user is now free to manually edit those
tables. While the user is performing this editing,
TransformGen watches over the user’s shoulder and
prevents him from performing changes which are
inconsistent with the grammar. For instance, Trans-
formGen ensures that the correct number of
children are supplied for each nonterminal, that
each operator has the proper attributes, etc.

The transformation engine for a particular set of
grammar changes resembles a typical structure
editor that might have been produced by any
structure-oriented environment generator.
However, there are two important differences. First
the “editor” must simultaneously access two
grammars.6 one describing the old trees and the

6 Actually, there may be more than two @ammars since at-
tributes may have their own gmmmars as well.

other describing the ones to be built. Second, it
must know how to intcrprct a transformation table.
When an old tree is to bc transfomicd it is first read
using the old grammar. Then, as described in Set-
tion 4. a new tree is constructed in a top-down fash-
ion using information from the old tree, the trans-
formation table, and the new grammar. The process
is stancd by consulting the transformation table
entry for the root operator of the old tree to deter-
mint the root operator in the new tree. The com-
poncnt description in that table entry contains the
infonnation that recursively invokes the transformer
for each component of the new root. Finally, if
necessary, it performs a post processing walk of the
new tree, invoking any implementor-supplied
routines that augment the transformation tables.

In our implementation, existing trees are trans-
formed only as needed. Each tree is tagged with a
version stamp that indicates the grammar version
with which it was produced. When a user attempts
to access a tree, the environment checks that the
version stamp is consistent with the current version
of the grammar. If not, the appropriate transformer
is invoked to bring the tree up-to-date. If several
versions of the grammar have been released since a
tree was last read then the transformation proceeds
incrementally From one version to the next until it
becomes current.

6. Evaluation
The current implementation has been used to

make a substantial number of changes to the gram-
mar of ARL, the language we use for writing
semantic routines [I]. The grammar for the en-
vironment is a large one, containing over 150
productions, and is currently being used in research
projects at a number of academic and industrial in-
stitutions around the world. Using TransformGen
we have been able to generate transformation tables
for 67 grammar changes to ARL. It took a single
day to generate the tables. One hour was spent
making changes to the ARL grammar. Trans-
formGen generated the proper tables for 48 of the
67 changes made. It was also necessary to write 30
routines to assist in the transformation. The vast
majority of these routines were extremely simple.
Over 20 of them were boolean functions that only
needed to examine a single node in the tree.

167

The grammar changes for which TransfonnGcn
could not automatically gcneratc transformations
arc the following:

l Replacement of a production with a set of
productions.

l Addition of structural levels to the tree.
l Relocating pieces of the tree to new locations.
l Merging of multiple nodes into a single node.

It is usefui to consider each of these in more detail
to understand why they failed. The difhculty in
replacing a production, call it A, with, a set of
productions, {B. C, D), is that the transfonncr must
decide whether to construct B, C, or D in the new
tree when it encounters production A in the old
tree. The decision is likely to depend on some part
of the state of the tree, which is what happened in
this case. As a result it was necessary to write trans-
formation routines to examine the state and decide
on a particular production to use.

Adding structural levels to the tree and relocating
pieces of the tree are more difficult problems. The
difficulty is that arbitrary changes are being made to
the smchm of the tree, while the conlenls of the
tree should remain unchanged. This type of change
is easy to implement by directly editing the transfor-
mation table. Unfortunately, we do not yet know
how to express such modifications in a way that is
easy both for the person modifying the grammar to
understand and for TransformGen to interpret un-
ambiguously. We expect that with experience using
TransformGen this type of change will become un-
derstood well enough that we can automate it in the
fuhlre.

Merging multiple nodes into a single node is
really a special case of the relocation problem dis
cussed above. In the old version a COMMENT
operator was defined to be a single line comment,
In the new version a COMMENT was allowed to be
multiple lines. The goal was to combine consecu-
tive single-line comments in old trees into single
multiple-line comments in the new tree. This in-
volved writing a transformation routine to find the
consecutive comments and combine them.

Initial experiments using TransformGen indicate

that it is a powerful tool for alleviating the problems
of structure modifications. In the past, changes
such as those made to the ART, grammar would
have invalidated virtually every one of the hundreds
of programs written using the earlier version. Now
instead of apologetically informing our colleagues
that they must either throw away their existing code
or make do with tbc old inferior release, we can
send them the new grammar together with the
transformer produced by TransformGen.

7. From Syntax to Semantics
The transformations performed by TransfotmGcn

are strictly structural. That is, the system currently
provides no assistance in modifying the semantic
processing and other tool functionality associated
with a changed environment. If, for example, an im-
plementor deletes a son from a production in a
grammar. then any existing semantic processing
routine that attempts to access that son will be in
error. Currently it is up to the implementor to dis-
cover this fact and change such routines
appropriately.7

We are investigating the possibility of extending
TransformGen to provide some form of semantic
assistance. While no transformer can completely
automate the propagation of stntctural modifica-
tions into associated semantic changes, it may be
possible for the transformation environment to
warn the implementor of potential and actual incon-
sistencies introduced by a grammar change. The
ability to do this relies on the fact that semantic
processing and other tool functionality is described
in a notation that makes its dependency on logical
structure explicit. Daemons written in a high level
tree manipulation language (such as ours [lD and
attribute grammars (such as the Synthesizer
Generator’s [lo]) both have this property. The ex-
tent to which we will be able to provide automatic
support for semantic changes, however, remains an
open issue.

7By using the Gandalf programming environment and sym-
bolic addresses to navigate through trees in the semantic
routines. it is easy to find all the uses of a production. Modifia-
tion is still up to the implementor, however.

168

8. Conclusion References
While the techniques described in this paper were

developed specifically to solve problems of grarn-
mar evolution for structure-oriented environments,
many of the results carry over to other systems. In
particular, our experience would indicate that there
are three essential ingrcdicnts to a successful ap-
proach to maintenance based on structural transfor-
mation. First, the objects to be transformed must be
represented in a structured form as described by
some formal notation. Second, it is important to
provide an environment in which monitored
changes can be made to this notation. This environ
ment must bc able to translate these changes to con-
sequent actions that can bc performed during the
object transformation process. Third, any resulting
transformation scheme must be extensible along
two dimensions: it must be possible to augment the
repertoire of transformations automatically handled
by the transformer as new classes of transformation
become better understood, and it must be possible
for the person who is making the changes to aug
ment the automatic mechanisms with routines for
handling special cases.

PI Vincenzo Ambriola, Gail E. Kaiser, and
Robert J. Ellison.
An Action Routine Model for ALOE.
Technical Report CMU-CS-84-156,

Carncgic-Mellon University, Computer
Science Dcpartmcnt, August, 1984.

[2] Robert Balzer.
Automated Enhancement of Knowledge

Rcprcsentations.
In Proceedings of the InternationalJoint

Conference on Artificial Intelligence,
pages 203-207. 1985.

[3] Ravinder Chandhok, David Garlan, Dennis
Goldenson, Mark Tucker, and Phillip Miller.
Structure Editing-Based Programming En-

vironments: The GNOME Approach.
In Proceedings of NCC85. AFIPS, July,

1985.

L41 Veronique Donzeau-Gouge, Gerard Huet,
Gilles Kahn, and Bernard Lang.
Programming Environments Based on Struc-

tured Edi tars: The Mentor Experience.
Interactive Programming Environments
McGraw-Hill Book Co., New York, NY,

1984.

The results of this approach, at least within the
domain of structure-oriented environments, have
been encouraging. We have been able to make sub-
stantial improvements to existing environments that
would have been infeasible using the manual, ad
hoc techniques available before TransformGen.
The generator for structural transformations is a
powerful tool that can be built relatively easily by
extending existing environment generators. Having
long promoted the use of structure-oriented en-
vironments for rapid prototyping we can now do so
with the confidence that these environments can
also be maintained.

Acknowledgements
We are greatly indebted to many people who

helped to shape the ideas that have emerged in this
work. In particular, Benjamin Pierce, Mark ‘Tucker,
and Nice Habermann contributed substantially to
the design of TransformGen and provided valuable
feedback throughout. We would also like to thank
those who provided constructive criticism of earlier
versions of this paper: John Wenn, Richard Lemer,
Nice Habennann and Benjamin Pierce.

151 David B. Garlan and phillip L. Miller.
GNOME: An Jntroductory Programming

Environment Based on a Family of Sttuc-
ture Editors.

In Proceedings of the Sojware Engineering
Symposium on Practical Sof)ware
Developmenr Environments. ACM-
SIGSOFT/SIGPLAN, April, 1984.

bl Charles W. Krueger.
The GANDALF Editor Generator Refer-

ence Manuals.
In The GANDALF System Reference

Manuals. Technical Report, Computer
Science Department, Carnegie-Mellon
University, Pittsburgh, PA., 1986.

169

p] Robert Nix..
Editing by Example.
In Conjerence Record of the Elevenrh ACM

Symposium on Principres of Programming
Lunguages, pages 186.195. ACM,
January,l984.

[8] David S. Notkin and A.Nico Habermann.
Gandalf Software Developments.
IEEE Transacrions on Soflware Engineering,

1986.
To appear.

[9] Steven P. Reiss.
Graphical Program Development with

PECAN Program Development Systems.
In Proceedings of the Soflware Engineering

Symposium on Practical Sojbure
Development Environments. ACM-
SJGSOFT/SIGPLAN, April, 1984.

[lo] Thomas Reps and Tim Teitlebaum.
The Synthesizer Generator.
In Proceedings of the Software Engineering

Symposium on Praclical Sojkre
Developmenl Environments. ACM-
SIGSOFT/SIGPLAN, April. 1984.

P I] Barbara J. Staudt and Vincenzo Ambriola.
The ALOE Action Routine Language

Manual.
In The GANDALF System Reference

Manuals. Technical Report, Computer
Science Departmens Carnegie-Mellon
University, Pittsburgh, PA., 1986.

170

