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Abstract 
A serious problem for programming environ- 

ments and operating systems is that existing 
software becomes invalid when the environment or 
operating system is replaced by a new release Un- 
fortunately, there has been no systematic treatment 
of the problem; current approaches are manual, ad 
hoc, and time consuming both for implementors of 
programs and for their users. In this paper we 
present a new approach. Focusing on a solution to 
the problems for structure-oriented environments, 
we show how automatic converters can be generated 
in terms of an implementor’s changes to formal 
descriptions of these environments. 

1. Int reduction 
A serious problem for programming environ- 

ments and operating systems is that existing 
software becomes invalid when the environment or 
operating system is replaced by a new release. (In 
the widespread conversion from Version 4.1 of BSD 
UnixTM to Version 4.2, for example, any program 
that made use of the file directory structure became 
obsolete.) At the very least, work must partially halt 
while conversion takes place: programs are 
modified and recompiled and old data represen- 
tations are converted to new. Users are burdened 
with a period of instability and loss of functionality 
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for inadequate conversions. Implementors of 
programs arc burdened with the tasks of locating all 
programs to be changed and then, typically, 
manually modifying old code on a case-by-case 
basis. Consequently, users and implementors are 
faced with a dilemma: stability can be achieved by 
ignoring successive releases, in which case the en- 
vironmcnt will not meet the evolving needs of its 
users: or change can be allowed, at the cost of a time 
consuming process of conversion. 

Structure-oriented environments,2 such as 
[8,4,9, lo], are a class of programming environ- 
ment for which these problems are particularly 
severe. Structure-oriented environments are usually 
generated from a formal description that is 
processed and linked with a collection of common 
facilities. The formal description, or grammar, is 
typically a variant of BNF. It characterizes the form 
of programs. which are represented as abstract syn- 
tax trees. The common facilities typically support 
the creation, modification, and storage of programs 
in the running environment. When the grammar of 
a structure-oriented environment is changed in any 
but trivial ways, existing trees representing valid 
abstract syntax under the old grammar may not be 
correct under the new grammar. At early stages of 
environment prototyping it may be possible to 
simply discard the old trees. However, in practical 
settings where users have come to depend on the 
programs created in the old environment, a sudden 
announcement that all existing trees are no longer 
valid will not be greeted with enthusiasm. 

For most operating systems and programming en- 
vironments the situation is mollified by the fact that 
major evolutionary changes may be rare and may 

2w e take the term “structure-oriented environment” to be 
synonymous with “syntax-directed environment”. “languagt? 
bPscd environment”, “stnxture editor-based environment”, de. 
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affect only a small number of programs. For 
structure-oricntcd cnvironmcnts, however, changes 
tend to bc much more frequent and. as we have 
mcntioncd, affect virtually all existing program 
trees. Changes occur more frcqucmly bccausc users 
wish to take advantage of the ability to easily 
generate new environments from formal dcscrip- 
tions. Improvements to the environment - cithcr 
through the introduction of new toots or the en- 
hancemcnt of existing tools - usually require 
changes to the grammar that characterizes program 
trees. (For some examples see [S].) 

There has been virtually no research on systematic 
solutions to these problems. This is as true for 
general programming environments as it is for 
structure-oriented environments. Current ap- 
proachcs are either blatantly ad hoc, or are based on 
the idea of rcparsing textual rcprcsentations of exist- 
ing program trees. While the latter approach may 
be adequate for some purposes, it has a number of 
problems, itcmizcd later, that make it unsuitable as 
a general solution. 

In this paper we present a new approach. Focus- 
ing on a solution to the problems for structure- 
oriented environments, we show how automatic 
converters can be generated in terms of an 
implementor’s3 changes to the formal descriptions 
of these environments. In the following sections we 
describe the design and implementation of an en- 
vironment, called TransjbmtGen, in which an im- 
plementor can make structured changes to the for- 
mal description of a structure-oriented environ- 
ment The output of TransformGen is a new gram- 
mar together with a transformer, which takes in- 
stances of trees built under the old grammar and 
automatically converts them to instances of trees 
that are legal under the new grammar. We then 
discuss the practical effect this approach has had in 
coping with changes to a large structure editor en- 
vironment in use at a number of educational and 
industrial sites. In conclusion we briefly indicate 
how these techniques might be applied to solve 
similar problems for programming environments 
and systems in general. 

%?I roughout this paper we refer to the designer, builder, and 
maintainer of an environment as an implemenror. 

2. The Transformational Approach 
To illustrate the problems associated with chang- 

ing the grammar that describes a structure-oriented 
environment, consider Figure 2-1. Here a 
MODULE is described as an entity having as one of 
its components a single IMPLEMENTATJON. 
Suppose that after having used an environment 
gencratcd from this description, we decide to en- 
hance the system by allowing a module to have a 
collection of implcmcntations, each implementation 
distinguished by a version number. The grammar 
might then look as pictured in Figure 2-2. 

MODULE ::= MOD-NAME INTERFACE IMPLEMENTATION 
attribute is-used: &o/eon 

MOD-NAME : : = iden@er 

INTERFACE ::= list of EXPORT-ITEM 

IMPLEMENTATION ::= . . . 
. . . 

A typical grammar consists of a collection of BNF-like produc 
lions that specifies the abstract syntax of a programming environ- 
ment. Here, for example. MODULE has three components 
whose types are given by the productions MOD-NAME, IN- 
TERFACE, and IMPLEMENTATION. Productions may have 
associated attributes such as the ‘is-used’ attribute of MODULE 

Figure 2-1: Grammar foraModule Description 
Environment - Version 1 

Any stored instance of a MODULE constructed 
from the environment based on the old grammar 
will now be obsolete since the new environment ex- 
pects VERSIONS in the place that the old environ- 
ment has an IMPLEMENTATION. What is 
needed is a way to transform old instances of 
MODULEs into the new format. In the example of 
Figures 2-l and 2-2 we would like to add an ad- 
ditional level of structure to the grammar to 
represent the module’s sequence of versions. To 
transform existing trees we would insert the old IM- 
PLEMENTATION of a MODULE as the first com- 
ponent of a sequence of VERSIONS, perhaps 
giving it a default VERSION-NUMBER in the 
process. Additionally, we would move the old ‘is- 
used’ attribute of the old MODULE to be an at- 
tribute of the new IMPLEMENTATION. 
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MODULE ::= MOD-NAME INTERFACE VERSIONS 

VERSIONS : : = list of VERSION 

VERSION ::= VERSION-NUMBER IMPLEMENTATION 

VERSION-NUMBER : : - integer 

IMPLEMENTATION ::= . . . . 
attributQ is-used: bookan 

. . . . 

In this version of the grammar tie description of MODULE has 
been changed to allow it to have multiple versions. Each vetion 
has an associated version number. The old ‘is-used’ attribute of 
MODULE is now an attribute of the IMPLEMENTATION. 

Figure 2-2: Grammar for a Module Description 
Environment - Version 2 

One common approach to the problem is il- 
Iusuated by the three stage process pictufed in 
Figure 2-3. First, a tree is “unparsed” to a textual 
form. Next, changes are made to this textual 
representation to produce a textual form that is legal 
for the new environment, Finally, the modified text 
is repassed into a new tree by a parser that can con- 
vert text to abstract syntax trees that are valid under 
the new grammar. 

tree1 n -w--w 3 A tree2 

text1 cl t-y--+o toxtz 

Figure 2-3: The Transformation Process 

There are a number of problems with this ap- 
proach: 

l A narser must be builf, This voids one of the 
primary attractions of structure-oriented en- 
vironments, namely that they can be built 
without the overhead of producing a parser. 

l A substantial manual effort mav be involved 
in transformino; text, While some progress has 
been made in techniques for producing 

automatic transformers for text [7], currently 
thcsc tcchniqucs arc not powerful enough to 
handle the range of transformations needed in 
this context. 

l Information mav be lost This typically occurs 
when attributes arc used to store information 
that cannot bc directly regenerated From a 
canonical textual representation. For example, 
in systems such as [4, 1.31 an attribute can be 
used to store such things as a “change log”. 

l Conversion is ad hoc. There is no direct en- 
forceable correspondence between the 
changes made to a grammar and changes that 
occur in the translation process. 

Our alternative approach is illustrated by the 
dotted line in Figure 2-3. In this approach existing 
trees produced by the old environment are directly 
converted to trees that are valid in the new environ- 
ment. No parser is needed, no human need be in- 
volved in the translation process, and the transfor- 
mation can be quite efficient since no intermediate 
forms are involved. Dut in order for such a solution 
to be practical it must be possible (a) to generate 
such a tree-to-tree transformer automatically or 
semi-automatically, and (b) to augment the 
automatic transformation methods to take care of 
special cases. The first requirement is necessary to 
reduce the cost of producing such a transformer, 
and the second because there are classes of transfor- 
mations that cannot be automatically generated or 
that may not be handled efficiently by automatic 
techniques. 

In the following sections we will show how these 
two requirements can be met. The basic idea is that 
we provide an environment (called TrunsformGen 
for “Transformer Generator”) in which an im- 
plementor makes smcrured changes to an existing 
grammar. Any number of changes can be made and 
in any order. When all the changes have been 
made, TransformGen produces a table of transfor- 
mation rules that can be interpreted to convert old 
representations to new. The implementor can then 
augment the automatic mechanisms in three ways: 
by directly modifying the tables, which are written 
in a human-readable format., by writing transfor- 
mation routines to perform tricky transformations, 
or by adding a set of ucrion routines that are invoked 
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in a post-processing phase when the transformer has 
completed its work. 

While little has been written about the main- 
tenance of structure-oriented environments, the ap- 
proach described here most closely rcscmbles the 
work of Balzer dealing with the maintenance of 
knowledge representation systems [2]. However, 
unlike Balzer’s work, Transform&n allows mul- 
tiple changes to be composed into one transfor- 
mation pass of the database, deals with the more 
tightly constrained type systems of structure- 
oriented environments, can potentially incorporate 
a much wider range of high-level changes, contains 
hooks for arbitrary implementor extensions, and 
does not require the overhead of associating with 
each production type a set of pointers to all in- 
stances of that production. 

3. Requirements for a Tree 
Transformer 

The approach outlined above requires the ability 
to interpret changes to a grammar in terms of the 
effects of these changes on existing trees. Some 
changes are trivial to interpret. For example, if the 
implementor adds a new production to a grammar, 
no transformation is required because existing trees 
are not affected. Only slightly more complex is a 
grammar change that adds a new component to a 
non-terminal production. The required transfor- 
mation must map components of the old production 
to the appropriate locations in the new production, 
leaving an empty placeholder for the new com- 
ponent. 

In the general case, grammar changes are not so 
easy to interpret. The two fimdamental challenges 
for implementing a transformer generator are 
composubilifr and coverage. Composability refers to 
the problem of representing the effects of arbitrarily 
many grammar changes within a single transformer. 
This becomes a significant problem when multiple 
modifications are made to interacting productions. 
To take a simple example, if an implementor adds a 
new component to a production and later reorders 
those components, the generated transformer must 
be able to interpret the composition of the two 
changes in terms of the original component list 

Coverage refers to the ability of a transformer to 
provide appropriate transformations for a type of 
change in the environment description. In general it 
is not possible for a transformer gcncrator to 
provide complete coverage. This is true for two 
reasons. First, given any grammar change, there 
may bc scvcral possible ways in which to transform 
existing trees so that they arc valid in the modified 
grammar. Choosing the correct interpretation re- 
quircs the ability to infer the implementor’s inten- 
tions. As a simple example, suppose a production 
goes through the following sequence of changes: 

(1) x ::= Y 2 
( 2 ) X : : - 2 

-- the original /inn 

-- implementor deletes 
Jirst componenl 

(3) x ::= 2 Y -- implementor inserts 
new second component 

Is this sequence of operations really a deletion- 
addition pair or does it represent a single reorder 
operation? The choice will have a large effect on 
the type of transformation generated. Second, a 
transformer generator can only capture modifica- 
tions that are made to the grammar itself. If seman- 
tic processing is implemented by procedures outside 
the grammar (such as daemons), changes to the 
semantics cannot be recognized by the transformer 
generator. 

Since complete automatic coverage is not pos- 
sible, it is essential to allow an implementor to sup- 
plement the automatic mechanism to handle corn- 
plex transformations and transformations associated 
with semantic processing. 

TransformGen is capable of automatically 
dling the following types of grammar changes. 

l Addition or deletion of productions 
l Renaming of productions 

han- 

l Addition or deletion of components or at- 
tributes of a production 

l Reordering productions, or components or at- 
tributes of a production 

l Changing the type of the value associated with 
a terminal node 

0 Changing nonterminals into terminals 
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l Changing terminals into nontcrminals 

An implementor can supplement the automatic 
mechanisms to deal with more complicated changes 
such as: 

l Addition of structural levels 
l Deletion of structural levels 
l Changing semantic processing 
0 Complex tree restructuring. 

As complex transformations become well under- 
stood they can be incrementally added to the 
automatic repertoire of TransformGen. 

4. The Generation of a Transformer 
There are two major steps involved in the trans- 

formation proecss. First, a transformer is generated 
based on grammar changes made by an implemen- 
tor. Second, the transformer is applied to existing 
trees created with the old version of the grammar in 
order to update them to the new version. This see- 
tion describes the process of generating a trans- 
former using the example introduced in Section 2. 
In order to understand this process, the basic algo- 
rithm used by a transformer is described first. 

The transformation of existing trees involves a 
top-down construction of a new tree. The contents 
of the new tree are derived from the contents of the 
old tree by applying derivation rules encoded in the 
transformer. These derivation rules indicate how to 
translate each production in the old grammar into a 
production in the new grammar. An individual rule 
indicates what production to use to construct a new 
node, and how to recursively build each component 
and attribute of the new node.4 The choice of rule 
to apply is determined primarily by the production 
used to construct the node in the old tree. Thus as 
each node in the old tree is being transformed, the 
rule base is consulted in order to perform the car 
rect construction in the new tree. 

4 Since attributes are clcsmibed via attribute gnmmus. the 
same uansfoxmation mechanism an be applied to tmnsfonn 
atlributetner 

4.1. Transformation Tables 
The editing commands of TransformGcn not only 

modify the grammar specification. but also generate 
a tree transformation table consisting of derivation 
rules that reflect grammar changes. The table con- 
tains one or more entries for each production in the 
original grammar. Each entry consists of three 
parts: a transformation on the production operator 
itself, a transformation on each component of the 
production, and a transformation on each attribute 
of the production. For instance a production that 
has not been modified would have an entry as 
shown in Figure 4-l. 

production operator: OPl 
new self: OPI 

component 1: Transform old component 1 
component 2: Transform old component 2 
. . . 
attribute a: Transform old attribute a 
attribute b: Transform old attribute b 
*.. 

Figure 4-l: Table Entry for an 
Unmodified Production 

This would have the effect of translating every 
instance of OPl to itself. 

As in Figure 4-1, transformations often simply 
specify a production in the new grammar and a 
recursive transformation for each old component 
and attribute. However in order to provide tmns- 
formations that add structural levels to a tree, it is 
necessary to specify a more complex subtree to 
build. Consider the grammar changes between 
Figures 2- 1 and 4-2. 

MODULE ::- MOD-NAME INTERFACE VERSIONS 

VERSIONS ::- list of IMPLEMENTATION 

IMPLEMENTATION ::- . . . 
pttributa is-used: bookn 

I..... 

Figure 4-2: Grammar for a Module Description 
Environment - Intermediate Version 

These grammar changes require the addition of a 
structural level to existing trees allowing for the list 
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of 1MPLEMENTATIONs. The transformation 
table entry is shown in Figure 4-3. 

production operator: MODULE 
new self: MODULE 

component 1: Transform old component 1 
component 2: Transform old component 2 
component 3: VERSIONS -- Vserhenew 

VERSIONS production 
element 1: Transform old component 3 

-- Old IMPLEMENTATION node 
attribute is-used: Transform old 

attribute is-used 

Figure 4-3: Adding a Structural 
Level to a Production 

This entry will transform every old MODULE into 
a new MODULE. The MOD-NAME and INTER- 
FACE are placed in the same locations as in the old 
tree. The third component of a new MODULE gets 
its value by building a VERSIONS node and 
making the IMPLEMENTATION of the old 
MODULE be the first element of the VERSIONS 
list. Note also that the is-used attribute now be- 
comes an attribute of the IMPLEMENTATION 
rather than the MODULE. 

production operator: MODULE 
new self: if oldnode.is-used then MODULE 

-- Checks that the module t tad 
component 1: Transform old component 1 
component 2: Transform old component 2 
component 3: VERSIONS 

element 1: Transform old component 3 
attribute is-used: Transform old 

attribute is-used 
eunt 

Figure 4-4: Conditional Transformation 

In some cases the implementor will not want 
every instance of a production to be transformed 
into the same new production. To allow for this 
possibility, a condition may be attached to each 
transformation table entry. The condition might be 
used to compare the value of a terminal node to a 
specific string, make queries concerning other nodes 
in the original tree, or test attribute values. For 
instance suppose in the example of converting 
MODULES to contain multiple IMPLEMEN- 
TATIONS we do not want to waste time transform- 

ing MODUI.Es that are not used. Then we only 
want to do the conversion when the is-used at- 
tribute of a MODULE is true. This transformation 
table entry is shown in Figure 4-4. 

4.2. Composability 
The composability problem described in Section 3 

is overcome by encoding transformation table 
entries in such a way that grammar changes can be 
easily combined. As a grammar is being modified 
there will typically be a scqucnce of changes that 
can be made in a somewhat arbitrary order. At each 
interrncdiatc step during the grammar modification 
the transformation table must also be updated ap 
propriatcly. However, the final transformation 
table should be the same, independent of the order 
in which the grammar changes were made. To bet- 
ter understand the problem and solution it is useful 
to think of the grammar modification process as 
beginning in a star2 state, proceeding through a 
series of operations that modify the cunenl state, 
until the goal state is reached. The start state is the 
old version of the grammar. The current state is any 
intermediate version of the grammar. The goal state 
is the new version of the grammar. The key to the 
solution is in recognizing that the implementor is 
always editing an intermediate version of the gram- 
mar. The productions of this intermediate grammar 
version are always encoded in the current state of 
the transformation table. Therefore whenever a 
change is made to a grammar production, the trans- 
formation entries must be starched for all occur- 
rences of the production operator name. The effects 
of the production modification must be replicated at 
each occurrence of the production operator name.5 
Note that as in Figure 4-4 a production operator 
name may occur within a component description. 
By replicating the effects we are ensuring that the 
actual transformation of existing trees can be per 
formed in a single pass. 

‘It is important to emphasize that a transformation entry 
consists of a rule to vansform an operator. a set of rules to 
transform the components, and a set of rules to transform the 
attributes of the production. The production operator name 
from the old grammar is specifically not a part of the entry. It is 
simply the index into the transformation table. The result is that 
the old production operator names never change. Only the 
entries associated with those names are modified. 
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Consider the grammar changes bctwccn Figures 
4-2 and 2-2. The associated change to the transfor- 
mation tilblc must compose with the table shown in 
Figure 4-4. The grammar change rcquircs that we 

change our current understanding of VERSIONS. 
To do this we search the transformation table for all 
Occurrences of the VERSlONS production 
operator. WC want to modify the first clcmcnt to be 
a VERSION production. WC also want to give a 
default value of 1 to the VERSION-NUMBER 
component. Now the transformation entry for a 
MODULE is as shown in Figure 4-5. 

production operator: MODULE 
new self: if oldnode.is-used then MODULE 

component 1: Transform old component 1 
component 2: Transform old component 2 
component 3: VERSIONS 

element 1: VERSION -- Use the new 
VERSIONprcduction 

component 1: VERSION-NUMBER with 
value - 1 

-- Use a default v&e of I 
component 2: Transform old 

component 3 
attribute is-used: Transform old 

attribute is-used 

Figure 4-5: Composition of Modifications to 
Related Productions 

4.3, Coverage 
Complete coverage of grammar editing requires 

the assistance of the implementor. This assistance 
can come in three forms: editing the transformation 
table directly, writing transformation routines that 
are invoked during tree transformation, and writing 
action routines that are called during a postprocess- 
ing phase. Direct editing of the transformation 
table is most useful for grammar changes that in- 
volve moving information to a different level of the 
tree, supplying values for terminal nodes and at- 
tributes, etc. These types of changes are expected to 
be common, but difficult to describe in a way that 
the transformer generator can understand. By edit- 
ing the tables directly the implementor will still 
receive the benefits of composition with later gram- 
mar changes. 

The major limitation of the transformation table 
is that all constructions in the new tree must be 

statically cxprcsscd as constant production names. 
If a transformation cannot bc expressed in terms of 
boolean conditions and constant productions nties 
in the table. then a inorc powerful mechanism must 
bc invoked to assist in tbc transformation. This ex- 
tra power is needed for cases where, for example, 
the user must bc asked to interactively choose how 
to transform a node, or where the information 
needed to select a production to construct is de- 
pcndent on parts of the new tree that have not yet 
been constructed. Such transformations can be 
described in ARL, an imperative tree-oriented pro- 
gramming language [ll]. This language is capable 
of examining both the old and new trees and query 
ing the user for advice. It is thus capable of per- 
forming any conceivable tree transformation. The 
disadvantage of a procedural approach is that com- 
posability can no longer be guaranteed. It is there- 
fore the implementor’s responsibility to ensure that 
the transformation routines correctIy map from the 
start state to the goal state, taking into account all 
editing changes that affect the node in question. It 
is possible to recursively call the transformer from a 
transformation routine. Thus a tricky transfor- 
mation can be applied to a node, and then its com- 
ponents can be constructed using the table as be- 
fore. The chief advantage of action routines in- 
voked during a postprocessing phase is that they 
have access to the completely transformed tree, and 
thus can make changes to the tree based on its trans- 
formed state. This should be most useful for recom- 
puting attributes, such as symbol tables, that depend 
directly on the tree. 

5. Current Implementation 
TransformGen has been implemented as an ex- 

tension of the Gandalf structure-oriented environ- 
ment generator system [S]. As it turned out, it has 
been relatively easy to build the necessary tools as 
simple extensions to existing facilities. The im- 
plementation consists of two main components. The 
first is the TransformGen environment itself. The 
second is a grammar-independent transformation 
engine that is linked with the generated transfer 
mation tables to produce a tree transformer for a 
particular set of grammar changes. 

Within the TransformGen environment the itn- 
plementor updates a grammar by making structural 
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changes to an existing grammar. In fact, Trans- 
form&n is simply an cxtcnsion to the Gandalf Sys- 
tcm grammar editor AlocGcn [6] that is used for 
constructing grammars from scratch. The im- 
plementation of TransformGen has changed 
AlocGen from a simple structured editor into a 
knowlcdgc-based editor. In AlocGen an editor 
command resulted in a simple change to the gram- 
mar maintained by AlocGcn. In TransformGen an 
editor command results not only in the same simple 
grammar change, but also in changes to the trans- 
formation table. 

For the most part, the user of TransformGen does 
not need to be aware that a transformer is being 
constructed. The user interface to TransformGen is 
virtually identical to the user interface for AloeGen. 
In fact, as long as the user applies commands for 
which TransformGen knows how to build the 
tables, the user interfaces are identical. If the user 
applies a command which TransformGen cannot 
fully interpret, the user is warned of the need to 
manually edit the transformation tables before 
proceeding with the change. In order to manually 
edit the transformation tables, the user must change 
from the normal AloeGen grammar editing view to 
the TransformGen view. In this view, the transfor- 
mation tables that have been constructed by Trans- 
formGen are presented to the user. The formatting 
of those tables is exactly as shown throughout this 
paper. The user is now free to manually edit those 
tables. While the user is performing this editing, 
TransformGen watches over the user’s shoulder and 
prevents him from performing changes which are 
inconsistent with the grammar. For instance, Trans- 
formGen ensures that the correct number of 
children are supplied for each nonterminal, that 
each operator has the proper attributes, etc. 

The transformation engine for a particular set of 
grammar changes resembles a typical structure 
editor that might have been produced by any 
structure-oriented environment generator. 
However, there are two important differences. First 
the “editor” must simultaneously access two 
grammars.6 one describing the old trees and the 

6 Actually, there may be more than two @ammars since at- 
tributes may have their own gmmmars as well. 

other describing the ones to be built. Second, it 
must know how to intcrprct a transformation table. 
When an old tree is to bc transfomicd it is first read 
using the old grammar. Then, as described in Set- 
tion 4. a new tree is constructed in a top-down fash- 
ion using information from the old tree, the trans- 
formation table, and the new grammar. The process 
is stancd by consulting the transformation table 
entry for the root operator of the old tree to deter- 
mint the root operator in the new tree. The com- 
poncnt description in that table entry contains the 
infonnation that recursively invokes the transformer 
for each component of the new root. Finally, if 
necessary, it performs a post processing walk of the 
new tree, invoking any implementor-supplied 
routines that augment the transformation tables. 

In our implementation, existing trees are trans- 
formed only as needed. Each tree is tagged with a 
version stamp that indicates the grammar version 
with which it was produced. When a user attempts 
to access a tree, the environment checks that the 
version stamp is consistent with the current version 
of the grammar. If not, the appropriate transformer 
is invoked to bring the tree up-to-date. If several 
versions of the grammar have been released since a 
tree was last read then the transformation proceeds 
incrementally From one version to the next until it 
becomes current. 

6. Evaluation 
The current implementation has been used to 

make a substantial number of changes to the gram- 
mar of ARL, the language we use for writing 
semantic routines [I]. The grammar for the en- 
vironment is a large one, containing over 150 
productions, and is currently being used in research 
projects at a number of academic and industrial in- 
stitutions around the world. Using TransformGen 
we have been able to generate transformation tables 
for 67 grammar changes to ARL. It took a single 
day to generate the tables. One hour was spent 
making changes to the ARL grammar. Trans- 
formGen generated the proper tables for 48 of the 
67 changes made. It was also necessary to write 30 
routines to assist in the transformation. The vast 
majority of these routines were extremely simple. 
Over 20 of them were boolean functions that only 
needed to examine a single node in the tree. 
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The grammar changes for which TransfonnGcn 
could not automatically gcneratc transformations 
arc the following: 

l Replacement of a production with a set of 
productions. 

l Addition of structural levels to the tree. 
l Relocating pieces of the tree to new locations. 
l Merging of multiple nodes into a single node. 

It is usefui to consider each of these in more detail 
to understand why they failed. The difhculty in 
replacing a production, call it A, with, a set of 
productions, {B. C, D), is that the transfonncr must 
decide whether to construct B, C, or D in the new 
tree when it encounters production A in the old 
tree. The decision is likely to depend on some part 
of the state of the tree, which is what happened in 
this case. As a result it was necessary to write trans- 
formation routines to examine the state and decide 
on a particular production to use. 

Adding structural levels to the tree and relocating 
pieces of the tree are more difficult problems. The 
difficulty is that arbitrary changes are being made to 
the smchm of the tree, while the conlenls of the 
tree should remain unchanged. This type of change 
is easy to implement by directly editing the transfor- 
mation table. Unfortunately, we do not yet know 
how to express such modifications in a way that is 
easy both for the person modifying the grammar to 
understand and for TransformGen to interpret un- 
ambiguously. We expect that with experience using 
TransformGen this type of change will become un- 
derstood well enough that we can automate it in the 
fuhlre. 

Merging multiple nodes into a single node is 
really a special case of the relocation problem dis 
cussed above. In the old version a COMMENT 
operator was defined to be a single line comment, 
In the new version a COMMENT was allowed to be 
multiple lines. The goal was to combine consecu- 
tive single-line comments in old trees into single 
multiple-line comments in the new tree. This in- 
volved writing a transformation routine to find the 
consecutive comments and combine them. 

Initial experiments using TransformGen indicate 

that it is a powerful tool for alleviating the problems 
of structure modifications. In the past, changes 
such as those made to the ART, grammar would 
have invalidated virtually every one of the hundreds 
of programs written using the earlier version. Now 
instead of apologetically informing our colleagues 
that they must either throw away their existing code 
or make do with tbc old inferior release, we can 
send them the new grammar together with the 
transformer produced by TransformGen. 

7. From Syntax to Semantics 
The transformations performed by TransfotmGcn 

are strictly structural. That is, the system currently 
provides no assistance in modifying the semantic 
processing and other tool functionality associated 
with a changed environment. If, for example, an im- 
plementor deletes a son from a production in a 
grammar. then any existing semantic processing 
routine that attempts to access that son will be in 
error. Currently it is up to the implementor to dis- 
cover this fact and change such routines 
appropriately.7 

We are investigating the possibility of extending 
TransformGen to provide some form of semantic 
assistance. While no transformer can completely 
automate the propagation of stntctural modifica- 
tions into associated semantic changes, it may be 
possible for the transformation environment to 
warn the implementor of potential and actual incon- 
sistencies introduced by a grammar change. The 
ability to do this relies on the fact that semantic 
processing and other tool functionality is described 
in a notation that makes its dependency on logical 
structure explicit. Daemons written in a high level 
tree manipulation language (such as ours [lD and 
attribute grammars (such as the Synthesizer 
Generator’s [lo]) both have this property. The ex- 
tent to which we will be able to provide automatic 
support for semantic changes, however, remains an 
open issue. 

7By using the Gandalf programming environment and sym- 
bolic addresses to navigate through trees in the semantic 
routines. it is easy to find all the uses of a production. Modifia- 
tion is still up to the implementor, however. 
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