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1. INTRODUCTION

A serious problem for programs using persistent data is that information

created and maintained by the program becomes invalid when the persistent

types used in the program are modified in a new release. This problem affects

many types of’ software including programming environments, database sys-

tems, and operating systems. For example, in the widespread conversion from

Version 4.1 of BSD UnixTM to Version 4.2, file directory structures created

under 4.1 were incompatible with 4.2 and therefore required conversion. To

install a new release of an environment or system requires, at the very least,

design and construction of a conversion process for existing persistent data,

and work must partially halt while conversion takes place. Users are bur-

dened with a period of instability and loss of functionality in the case of

inadequate conversions. Consequently, users and implementors are faced

with a dilemma: stability can be achieved by ignoring successive releases, in

which case the environment or system will not meet the evolving needs of its

users; change can be allowed, at the cost of a time-consuming process of

conversion; or changes can be restricted to allow backward compatibility at

the expense of providing optimal type organization in the new release.

Structure-oriented environments,z such as those supported by Gandalf

[Habermann et al. 1986], Centaur [Borras et al. 1988], Pecan [Reiss 1984],

and the Synthesizer Generator [Reps and Teitlebaum 1984], are a class of

programming environments for which these problems are particularly severe.

A structure-oriented environment is typically generated from a formal de-

scription or grammar. One of the purposes of the grammar is to define the

structure of abstract syntax trees created with such an environment. When

the user exits the environment the abstract syntax tree representation of

the program, along with attributes and other information maintained by the

environment, is made persistent to avoid reparsing and reanalyzing the

program when the user accesses it at a later time. When the grammar is

changed in any but trivial ways, existing database whose trees are structured

according to the old grammar may not be compatible with the new grammar,

thus preventing the new environments from accessing the old trees. At early

stages of environment prototyping it may be possible to simply discard the

old databases. However, in practical settings where users have come to

depend on the information and programs created with the old environment, a

sudden announcement that existing trees are no longer valid will not be

acceptable.

For most database systems, operating systems, and programming environ-

ments the data invalidation and conversion problem is mollifled by the fact

that major evolutionary changes are rare and usually affect only a small

amount of the existing information. For structure-oriented environments,

lThroughout we refer to the designer, builder, and maintainer of an environment as an

im~lementor.

2We take the term “structure-oriented environment” to be synonymous with “syntax-directed

environment, “ “language-based environment,” “ structure editor-based environment, ” etc.
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however, changes tend to be much more frequent and, in general, will

significantly affect all existing environment databases. Changes occur more

frequently because of the ease with which environment implementors can

generate new environments from grammars. Moreover, improvements to the

environment—either through the introduction of new tools or the enhance-

ment of existing tools—usually require changes to the grammar for the

environment database. (For some examples see Garlan and Miller [1984].)

There has been little research on systematic solutions to this problem. This

is as true for general programming environments as it is for structure-ori-

ented environments. Current approaches are either blatantly ad hoc, are

based on the idea of reparsing textual representations of existing databases,

or severely limit the types of changes that can be made. While the parsing

approach may be adequate for some purposes, it has a number of problems,

itemized later, that make it unsuitable as a general solution.

In this article we present an alternative approach. Focusing on a solution

to the problems for structure-oriented environments, we show how automatic

converters can be generated in terms of an implementor’s changes to the

grammars of these environments. In the following sections we describe the

design and implementation of an environment, called TransformGen, in

which an implementor can make structured changes to the grammar of a

structure-oriented environment. The output of TransformGen is a new gram-

mar together with a transformer, which takes instances of databases built

under the old grammar and automatically converts them to instances of

databases that are legal under the new grammar. We begin with an overview

of the transformational approach. Then we present an example of its use

together with a detailed analysis of TransformGen. We compare this work to

other related research and evaluate the impact of the key design decisions we

made. In conclusion we indicate how these techniques might be applied to

solve similar problems for programming environments and systems in gen-

eral.

2. THE TRANSFORMATIONAL APPROACH

We begin by considering the motivating issues behind this work, the general

approach employed by TransformGen, and the difficult design problems

implied by such an approach.

2.1 The Need for Automated Transformation

A structure-oriented environment typically represents and stores its data as

an attributed abstract syntax tree (AST), often called the environment

database.3 The set of legal trees is determined by a grammar for that

environment. Like a context-free grammar for a programming language, the

grammar of a structure-oriented environment primarily consists of a collec-

‘The use of the term “database” ie reasonable since the AST serves as a central persistent

repository for all data manipulated by the tools in the environment. Many environments also

support queries over this data, transactions, replication, etc.
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tion of productions. Each node in a legal abstract syntax tree is an instance of

some production in the grammar for the environment, and the type of each

child of a node is determined by the corresponding component of the produc-

tion.

When changes are made to the grammar of a structure-oriented environ-

ment, stored trees are usually rendered invalid. For example, if a production

“X:: = ab” in a grammar is changed to “X:: = abc,” thus adding a new

component to the production, any “X” node in an existing AST will no longer

be a valid instance of the new “X” production.

When such changes are made, one option is to simply discard all old trees.

But this is clearly not a feasible alternative when substantial bodies of

information are at stake. The alternative is to convert old trees to a form that

is acceptable in the new environment.

A common approach to conversion is illustrated by the three-stage process

pictured in Figure 1. First, a tree is “unparsed to a textual form. Next,

changes are made to this textual representation to produce a textual form

that is legal for the new environment. Finally, the modified text is converted

to a new tree by a parser for the new grammar.

There are a number of problems with this approach:

A Parser Must be Built. One of the attractions of structure-oriented

environments is that they can be built without the overhead of producing a

parser. Since the data in the environment is represented as an AST, tools

such as compilers or interpreters can use these representations directly.

While it is true that for a released system of production quality a parser

would normally be constructed, construction of a new parser might not be

necessary for intermediate internal versions used within a development

group.

ACM Transactions on Programming Languages and Systems, VO1 16, NO 3, May 1994.
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A Substantial Manual Effort May be Involved in Transforming Text. In

addition to the work needed to produce a new parser or modify an existing

one, some changes to the textual form must typically be made by hand before

the new parser can be applied. One could write a textual transformer, but

this itself must be handcoded. While some progress has been made in

techniques for producing automatic transformers for text [Nix 1985], cur-

rently these techniques are not powerful enough to handle the range of

transformations needed in this context.

Information May be Lost. In many structure-oriented environments, parts

of the AST may not normally be displayed to a user. For example, a times-

tamp representing the creation date for a module in a programming environ-

ment might be kept for internal bookkeeping. Such information would typi-

cally be lost when the old tree is unparsed. Of course, it is possible to write a

special unparser that writes out all stored information, but this would

require the construction of a special parser and unparser just for the trans-

formation process.

Conversion is Ad Hoc. Since there is no direct, enforceable correspondence

between the changes made to the grammar and the changes that must be

made to the textual form of a program or the translating parser, there is little

guarantee that the resulting translated program will faithfully mirror changes

intended by the implementor of the grammar changes.

An alternative approach is illustrated by the dashed line in Figure 1:

Existing trees produced by the old environment are directly converted to

trees that are valid in the new environment. Using this approach, no parser

is needed; no human need be involved in the translation process; and the

transformation can be quite efficient since no intermediate forms are in-

volved.

But in order for such a solution to be practical it must be possible to

generate a tree-to-tree transformer automatically or semiautomatically. Au-

tomation reduces the cost of creating a transformer and can provide certain

guarantees of completeness and soundness. More importantly, nonautomated

solutions require an implementor to have detailed understanding of the

representations of trees and how they relate to their grammars. This is

contrary to the aim of most structure-oriented environments, which remove

the burden of understanding the internal representations by allowing the

implementor to create and maintain an environment at the abstract level of

the environment’s grammar [Habermann et al. 1986].

In the remainder of this article we show how it is possible to automate the

generation of transformers for enhancing structure-oriented environments.

We describe an environment, called TransformGen (for “Transformer Genera-

tor”), in which a grammar may be modified. Given a set of grammar changes,

TransformGen produces both a new grammar and a transformer that can be

automatically applied to convert old trees to new ones.

ACM Transactions on Programming Languagesand Systems, VOI 16, No. 3, May 1994
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2.2 Overview of TransformGen

TransformGen is a structure-oriented environment itself. The data manipu-

lated by TransformGen represents the grammars used to generate other

structure-oriented environments. Within TransformGen, an implementor

modifies existing grammars by applying TransformGen’s editing commands.

These commands allow an implementor to add and delete productions, change

the number of components of a production, change the types of the compo-

nents of a production, etc.

However, TransformGen not only provides an environment for modifying

grammars but also maintains a table of transformation rules. Each transfor-

mation rule describes how to map an instance of a production in the old

grammar into an instance of a production in the new grammar. As editing

commands are applied to an existing grammar, TransformGen produces

default transformation rules that correspond to those grammar changes.

TransformGen also allows the implementor to augment the default transfor-

mation rules, again using a set of built-in editing commands.

The overall process of using TransformGen is pictured in Figure 2. As

illustrated, the approach results in a two-phase process. In the first phase an

implementor interacts with the TransformGen environment to modify a

grammar as well as to augment the default transformation rules. In the

second phase, a transform engine uses the transformation rules to convert

old trees (valid for the original grammar) to new trees (valid for the modified

grammar).

Although in principle existing trees can be transformed at any time, in

practice the transformations are applied in a lazy fashion. Associated with

each revision of an environment is the set of transformation rules to convert

trees constructed with the previous incarnation of the environment. When

ACM Transactions on Programming Languages and Systems, Vol 16, No, 3, May 1994
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Initial Entry

production: P
new self: P
component 1: Transform old component 1
component 2: Transform old component 2
component 3: Transform old component 3

Fig. 3. Table entry before and after

swapping components.
Entry After Swap

production: P
new self: P
component 1: Transform old component 2
component 2: Transform old component 1
component 3: Transform old component 3

the user attempts to read an out-of-date tree into a new environment, the

environment automatically applies the transformation rules to convert the

tree. If several revisions have occurred since the tree was last read, several

transformation passes will be required.

The transformation of a tree is done in a top-down fashion. Starting with

the root node of the old tree, the transform engine consults the rules

associated with the production corresponding to that node. Each rule indi-

cates what conditions must be true to use the rule, how to construct a new

node, and how to recursively build the children of the new node. (The

transformation engine algorithm is presented in Section 7.)

TransformGen stores its rules in a table, which has an entry for each

production in the old version of the grammar. Each entry contains one or

more rules. These determine how instances of that production should be

translated. When TransformGen is first invoked on a grammar, every entry

in its transformation table initially consists of the identity transformation

rule. The result of using such a table is that each node in the old tree is

simply copied to the new tree. As the implementor modifies grammar produc-

tions, TransformGen updates the table with rules that provide a default

interpretation of each change made to the productions.

As a simple example, consider a production “P:: = abc.” Initially its entry

in the transformation table would contain the rule pictured in the top portion

of Figure 3. This rule simply copies instances of P from the old tree to the

new. Suppose an implementor swaps the first and second component of P to

produce “P:: = bat” in the new grammar. The new entry would contain the

default rule shown at the bottom of the figure. When applied to an instance of

P, this rule swaps its first two children.

Because the implementor can change grammars and transformation rules

only by using the commands provided, TransformGen is able to support two

important properties. First, it establishes completeness in the sense that

every production in the old grammar will have at least one transformation

rule for converting nodes of that production into nodes of productions in the

new grammar. Second, it guarantees soundness in the sense that any tree

transformation that takes place will, in fact, result in a legal tree in the new

grammar. (These properties are elaborated in Section 6.)

ACM Transactions on Programming Langaages and Systems, Vol. 16, No. 3, May 1994.
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However, TransformGen does not attempt to completely eliminate the

possibility that transformation errors will be encountered by the transform

engine when converting a tree. This is because, as we will see later, certain

transformation rules depend on the particular data in the tree being trans-

formed. While it would be possible to limit the repertoire of the implementor

to transformations that could be statically checked (and hence eliminate

transformation time errors), to do so would significantly restrict the flexibil-

ity of TransformGen. Later sections will illustrate this point in detail.)

2.3 Requirements for Automated Transformation

The two fundamental challenges for implementing a transformer generator

are composability and coverage. Composability refers to the problem of

representing the effects of arbitrarily many grammar changes within a single

transformer.4 This becomes a significant problem when multiple modifica-

tions are made to interacting productions. To take a simple example, if an

implementor adds a new component to a production and later reorders these

components, the generated transformer must be able to interpret the compo-

sition of the two changes in terms of the original component list.

Coverage refers to the ability of a transformer to provide an appropriate

transformation rule for each grammar change. In general it is not possible for

a transformer generator to provide complete coverage automatically. This is

because there may be many reasonable ways to transform existing trees so

that they correspond to a given grammar change. It is therefore impossible to

pick a single default that will always match the implementor’s intentions.

To illustrate, suppose a production goes through the following change:

(1) X:: = yz—the original form

(2) X:: = wz—implementor changes the type of the first component

There are several legitimate interpretations of this change. One interpreta-

tion treats the change as a deletion followed by an addition. A second

interpretation treats the change as a type modification. Adopting the first

interpretation we would discard the fh-st component of all X nodes when

transforming trees. Adopting the second interpretation, we can exploit the

fact that a node can be an instance of more than one (union) type, and keep

the first component if it happens to be in the type required by the new

grammar. In general, TransformGen chooses interpretations that attempt to

maximize the amount of information preserved across transformations, and

hence would pick the second interpretation. But it should be clear that

TransformGen’s choice may not be correct in all situations.

Since complete automatic coverage is not possible, it is essential that an

implementor be able to augment the default rules to handle transformations

that require alternative interpretations of the grammar-editing commands.

4There is also the issue of composing the transformational changes between successive revisions

of a grammar. This is easily handled by functional composition of the individual transformers,

ACM Transactions on Programming Languages and Systems, Vol 16, No. 3. May 1994
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TransformGen allows the implementor to augment the transformation tables

in two ways: by directly modifying the transformation tables and by writing

transformation functions to perform more complex transformations. These

are described in Sections 4.1.2 and 4.1.3, respectively.

3. A MOTIVATING EXAMPLE

In this section we illustrate the kinds of changes an implementor might make

to a grammar and the ways we would expect a transformer to handle those

changes. However, first we need to introduce some terminology and describe

the context in which TransformGen is used.

3.1 ALOE Grammars and Databases

TransformGen is implemented as part of the Gandalf environment genera-

tion system [Habermann et al. 1991]. Gandalf environments are generated by

linking together a language-independent kernel, a syntactic description of the

environment, and a semantic description of the environment. An environ-

ment’s syntax is defined by an ALOE grammar. This grammar determines

the form of the data stored in a Gandalf database by defining the set of legal

ASTS that a user of the environment can create.

An ALOE grammar is divided into three sections: terminals, nonterminals,

and classes. The rules defining terminals and nonterminals are called pro-

ductions. Consider the grammar fragment shown in Figure 4.

Every ALOE grammar has a unique root (or start) production. In this case

the root is MODULE. A nonterminal production lists the classes of its

components. There are two kinds of nonterminals: fixed arity and uariable

arity. The right-hand side of a fixed-arity nonterminal contains a list of

components representing the classes to which the children of the nonterminal

must belong. MODULE is a fixed-arity nonterminal with three components:

module-name, interface, and implementation.

In contrast, the right-hand side of a variable-arity nonterminal contains a

single class, syntactically enclosed in ( ). A variable-arity nonterminal node

may have any number of children, but they must all come from the same

class. Thus a variable-arity nonterminal represents a homogeneous list. In

the example above, IMPORTS may have zero or more components, each of

the class import-item.

A class is a type union of a set of productions.5 Nonterminals use classes to

indicate which set of productions are legal for each component. For example,

the interface class defines a type that is the union of the INTERFACE and

EMPTY-INTERFACE productions. Thus, an instance of an INTERFACE or

EMPTY-INTERFACE production would be legal as the second child of MOD-

ULE.

There are two types of terminal productions: valued and static. A valued

production has a lexical routine, which defines the legal values for the

production. For instance, the MODULE-NAME production has a value that

50ur use of the term “class” is therefore quite different from its use in object-oriented languages,

where “class” refers to an object type definition.

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994
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Root Production: MODULE

Nonterminals:

MODULE . module-name l~te~ace ,mp]emen~~on

IMPORTS = amport-itemz

EXPORTS = <export-item>

...

Claaaax
module-name = MODULE-NAME

Interface . INTERFACE I EMPTYIN’ll?F@ACE

Imports . IMPOR~

exports . EXpoR~

export-item . EXPORT-ITEM

Implementation . SOURCE

Terminals:
MODULE-NAME = [VdUd]

lex: lexi dentifier

EXPORT-ITEM = (valued]
lex: Iexstring

Fig. 4. Grammar for a module description environment—Version 1

is accepted by the lexidentifier lexical routine. Static terminals do not require

a value. They are typically used, as EMPTY-INTERFACE is here, to define

optional components. Another use is to define the values of an enumeration

type, such as TRUE and FMSE.

The grammar of an environment determines how a user constructs abstract

syntax trees that are syntactically legal in the environment. Nonterminal and

terminal productions in the grammar are instantiated to construct nodes in

an abstract syntax tree. The user interacts with an ALOE environment by

constructing a tree in a top-down fashion. Each nonterminal is displayed to

the user as a template to be filled in. The template consists of some concrete

syntax (also specified in the grammar, but not shown in the above example)

and placeholders, or metanodes, for each child of the nonterminal. The user is

expected to perform a construction at each metanode. The tree is complete

when no metanodes remain.

3.2 An Example Grammar Modification and Transformation

To illustrate the problems associated with changing a grammar, consider

again Figure 4. Here a MODULE is described as an entity having as one of

ACM Transactions on Programmmg Languages and Systems, Vol. 16, No. 3, May 1994
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its components a single implementation, which is written in the C program-

ming language.

Suppose that after having used an environment generated from this de-

scription, we decide to make the following enhancements to the system:

—allow multiple versions of each module implementation and associate a

version number with each version,

—associate documentation with each module,

—allow a module implementation to consist of either C or Lisp source code,

—distinguish the export items to be either procedures, data types, or vari-

ables so that we can perform intermodule type checking.

The grammar might then look as pictured in Figure 5.

Any stored instance of a MODULE constructed from the environment

based on the old grammar will now be obsolete. One reason is that the new

environment expects DOCUMENTATION in the place that the old environ-

ment has an INTERFACE. Figure 6 shows the same logical entity (a module)

with two different structural representations, one for each version of the

grammar. The shaded portions of the figure represent those portions of the

tree that are different in the two grammars.

What is needed is a way to transform old instances of MODULES into the

new format. A set of changes that will accomplish this transformation is the

following:

—The old SOURCE of a MODULE must be nested as the second component

of the first VERSION of a sequence of VERSIONS.

—The new VERSION must be given a default VERSION-NUMBER. In this

case we choose the value 1 as the initial version of existing modules.

—SOURCE must be changed to C-SOURCE.

—Each element in the list of EXPORT-ITEMS must be parsed and classified

as either being a PROCEDURE-SIGNATURE, TYPE-DECL, or VARI-

ABLE-DECL.

In Section 5 we present the details of such a transformer and describe how

it is constructed by TransformGen. But first we introduce the basic concepts

underlying the generation of transformers in TransformGen.

4. THE GENERATION OF A TRANSFORMER

To describe how TransformGen generates a transformer based on modifica-

tions to a grammar we first explain how TransformGen covers the full range

of possible grammar modifications, and then we show how TransformGen

composes interacting modifications within a transformer.

4.1 Achieving Coverage

Achieving coverage simply means that it is possible to express every transfor-

mation that an implementor might want to make. Recall from Section 2 that

a transformation table contains an entry for each production in the old

ACM Transactions on Pro~amming Languagesand Systems, Vol. 16, No. 3, May 1994
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Root Production: MODULE

Nont.arminalx

MODULE . module-name documentation lntsrface versions

INTERFACE . imports experts

IMPORTS = amport-item>

EXPORTS . <export-item>

VERSIONS = aereion>

VERSION . version-number implementation

Claeeau
module-name . MODULE-NAME

documentation . DOCUMENTATION

interface . INTERPACE I EMPTY-INTERPACE

imports . IMPORTS

exports . EXPORTS

versione . VERSIONS

vereion . VERSION

version-number . VERSION-NUMBER

Implementation . C-SOURCE I LISP-SOURCE

export-item . PROCEDURF-SIGNATURE I TYPE-DECL I VARL4BLE-DECL

Terminals:

MODULE-NAME . {valued)

lex: lexidentifier

DOCUMENTATION . {valued]

lex: lextext

VERSION-NUMBER . {valued)

lex: Iexlnteger

Fig. 5. Grammar for a module description environmenL—Version 2

version of a grammar, and each entry consists of one or more rules. Each rule

has a condition and an action that describes how to transform old instances of

a production. To achieve complete coverage, TransformGen supports three

mechanisms for creating transformation rules: generating rules automati-

cally, directly editing the transformation table, and writing transformation

functions.

ACM TransactIons on Programming Languages and Systeme, Vol. 16, No. 3, May 1994.
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Fig. 6. Transforming an old MODULE to a new MODULE.

4.1.1 Generating Transformation Rules Automatically. As outlined in Sec-

tion 2, TransformGen provides a set of commands for changing a grammar. In

addition to modifying a grammar, each command also modifies the rules in

the transformation table to reflect the grammar changes that it makes. We

can classify grammar-editing commands into four categories based on their

effects on existing databases. The categories are no-ops, syntactic-legality

modification, minor restructuring, and major redefinition. As we describe

these categories we will provide one example command from each. Complete

descriptions of all TransformGen commands can be found in Staudt et al.

[1988].

No-ops. As the name suggests, commands that are no-ops have no effect

on existing databases. Since they cannot affect existing databases, they are

also no-ops with respect to the transformation tables. Grammar-editing com-

mands in this category include:

—Creating a production or class

—Adding a production to a class.

To illustrate why these are no-ops, consider the effects that creating a

production should have on existing databases. Since the new production did

not exist in the old version of the grammar, it is impossible for existing

databases to have a node instantiated by that production. Since no instances

of that production will be encountered when transforming databases, we do

not require an entry in the transformation table.

Syntactic-Legality Modification. The syntactic-legality commands do not

change the structure of the database that is being transformed, but do

change the typing constraints of the grammar. In most cases when an editing

command in this category is used, it will result in a situation where some

nodes in the old database will be syntactically legal, but others will not. To

deal with this situation the generated transformer must check syntactic

legality when it performs the database transformations. Editing commands in

this category include:

—Changing a lexical routine

ACM Transactions on Programming Languages and Systems, Vol. 16, No. 3, May 1994.
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Initial Table Entry

production : OP1

new self: OP1
value: Use o!d value

Entry After Changing Lexical Routine

production : OP1
new self: OP1
value : Use old value { Warning: Lexical routine was changed. )

Fig. 7. Table entry before and after changing a lexical routine.

—Deleting a production from a class

—Changing a component’s class.

Consider the command that changes a lexical routine. Suppose a terminal

production that uses the lexical routine lexnumber (which accepts both real

numbers and integers) is changed so that it uses lexinteger. Then an instance

of this terminal production that has a real number for its value in the old

database will no longer be legal using the new grammar.

Since these commands do not affect the structure of the database, the

transformation tables do not need to be changed. However, to help the

implementor recognize that some databases may now be syntactically illegal,

we annotate the transformation table with hints that indicate what type of

change was performed. For the example of modifying a lexical routine, the

two versions of the table entry are shown in Figure 7. The implementator

then can scan the transformation table for these trouble spots and deal with

them appropriately. As described later in this section, the implementor can

directly edit the transformation table or add transformation functions to deal

with the syntactically illegal cases. For the lexical-routine example the

implementor might write a transformation function to round the illegal real

number to create a valid integer.

Structural Modification. Structural-modification commands result in sim-

ple structural changes to a database. They always involve some manipulation

of the components of a nonterminal. The structural-modification commands

include:

Deleting a component

—Creating a component

—Reordering components.

Suppose we delete component 1 of a production FIXEDOP. The transfor-

mation table must reflect the fact that the production now has one less

component, and when performing the transformation it is the first child that

should be skipped. Figure 8 shows the transformation table before and after

the component deletion. The modified table says that component 1 of FIXED-

OP in the new database should be a recursive transformation of component 2

of the old database. Component 1 from the old database is skipped, thereby
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Initial Table Entry

production : FIXEDOP
new self: F IXEDOP
component 1: Transform old component 1
component 2: Transform old component 2
component 3: Transform old component 3

Fig. 8. Table entry before and after

deleting the first component of a fixed-

Entry After Deleting a Component
arity nonterminal.

production: FIXEDOP
new self: FIXEDOP
component 1: Transform old component 2
component 2: Transform old component 3

achieving the desired deletion. (Section 4.1.2 explains how the implementor

can change the transformation table entries to move the old value of compo-

nent 1 to another location in the database, rather than deleting the value.)

Major Redefinition. The major-redefinition commands change the basic

nature of a production (e.g., changing a nonterminal to a terminal). Each

requires that we completely replace at least one portion of a rule (e.g., delete

all the component transformations). The major-redefinition commands in-

clude:

—Deleting a production

—Changing a terminal to a nonterminal, and vice versa

—Changing a static terminal to a valued terminal, and vice versa.

As an example of a major-redefinition command, consider the deletion of a

production. When a production is deleted, all nodes built using that produc-

tion will be illegal in the new database since the production for the node does

not exist in the new grammar. Unless the implementor directs TransformGen

to do otherwise, all nodes constructed with the deleted production will be

discarded when transforming the database. The transformation table entry

must then encode the fact that the node should be replaced by a metanode,

and any information about recursively transforming components or values

can be removed from the table. Figure 9 shows a transformation table entry

before and after deletion of a production. This entry states that all FIXEDOP

nodes should be replaced with a metanode. The effect of this transformation

is that all subtrees rooted at FIXEDOP are discarded.

4.1.2 Editing Transformation Tables. Automatic generation of transfor-

mation table entries does not provide complete coverage. Transformations

that are not automatically generated include:

—Nonlocal restructuring of the database

—Constructing default values or default children

—Making context-dependent changes

—Dealing with changes to the environment’s semantics.
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Initial Table Entry

pr<,dUCLlOn: F;xEDOP
new self: FiXEDOP
component : Transform

Fig. 9. Table entry before and after
component 2: Transform

deleting a production.
component 3: Transform

old component 1
old component 2
old component 3

Entry After Deleting the Production

production : FIxEDOP
new self: META

Despite the fact that these transformations cannot be automatically gener-

ated, they can be incorporated into a transformer if they are provided by the

implementor. The implementor can describe the necessary transformations

by modifying the transformation table or writing auxiliary functions to assist

in the transformation. The fact that the implementor must provide the

transformations is not a fundamental limitation of the transformation ap-

proach, but rather reflects the fact that many different transformations are

possible for a single grammar modification. As we gain more experience with

TransformGen we should be able to generate more of the common transfor-

mations automatically, but we believe that direct editing will always be

necessary to capture arbitrarily complex transformations.

When editing the transformation tables, the implementor can define more

powerful transformations than those that are automatically generated. These

transformations are expressed in a language that extends transformations we

have outlined with the following constructs:

—Tree expressions

—Production instantiations for component transformations

—Default values for valued-terminal nodes

—Function calls (to be discussed in the next section).

Tree expressions allow nonlocal restructuring of the database. They may

appear in component transformation rules. They describe a path through the

old database starting at the node being transformed and ending at the node

that should be recursively transformed for the given component. A tree

expression is a sequence of terms, evaluated from left to right. Each term

uniquely identifies the next node in the path. Legal values for a term are:

component, parent, right (sibling), and left (sibling). For example, a tree

expression such as “Transform old parent, left” means that the node to be

transformed is the old node’s parent’s left sibling.

Production instantiations supply default constructions for component

transformations. These are most useful for adding components to an existing

nonterminal and for nonlocal restructuring. When specifying a production

instantiation, the implementor must also indicate how to compute the compo-

nents or the value of the new production, using any technique desired (tree

expressions, default values, production instantiations, or function calls).
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production: A

new self: A

component 1: Transfer- zlr.jz~de, right

component 2: Construcz S

Value: 1

Fig. 10. Example ofanedited transformation table entry.

Default values are used to provide initial values to valued terminals

created with production instantiation rules. The implementor can supply this

value either by specifying default value directly inthe transformation table

or by specifying the name of a function that will compute the value at

transformation time.

Figure 10 illustrates how these constructs might be used. The value for

component 1 is specified as a tree expression. The node to transform is the

right sibling of the node currently being transformed. Component 2 uses a

production instantiation rule to create a valued terminal with a default value

of 1.

The TransformGen environment assures that a transformation table is

syntactically correct. It also performs static analysis to determine whether or

not the transformation table modifications made by the implementor corre-

spond to a valid transformation for the old and new grammar by identifying

potential sources of transformation time errors. (The details of this checking

are given in Section 6.)

4.1.3 Transformation Functions. Thus far we have discussed how trans-

formation tables are used to develop a transformer. The transformation

tables use a declarative language to define nonterminal and terminal trans-

formation rules. While allowing the implementor to modify the transforma-

tion tables has greatly enhanced the capabilities of TransformGen, there is

still some functionality an implementor may need that cannot be expressed

directly in the declarative language used for the transformation tables. We

can effectively extend the expressiveness of the transformation tables by

allowing implementors to call functions written in ARL, a powerful tree-ori-

ented programming language [Staudt and Ambriola 1986]. In particular,

context-dependent changes and changes resulting from new semantic restric-

tions often cannot be expressed directly in the transformation table language,

but can be expressed easily in ARL.

There are four ways in which functions can be used in the transformation

process:

—To compute boolean conditions

—To compute values for valued terminals

—To construct subtrees

—To locate a node in the old tree that is to be recursively transformed,
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Boolean conditions are used to incorporate context dependency into the

transformation process. The implementor can write boolean functions to

check the state of the old or new database. If the function returns true, the

attached transformation will proceed. Another use for boolean conditions is to

avoid transforming a node that would violate the new semantics of the

environment.

A function maybe used to compute a value for a valued-terminal node. This

value may depend on the contents of the old database (such as the value of a

particular terminal in the old database), the contents of the new database, or

even external information (such as the date).

An implementor may also write a transformation function that will return

a complete subtree. The function may itself recursively invoke the trans-

former to complete the subtree. In general, we discourage use of this type of

function since an implementor may make assumptions about the grammar

when writing the function. If later grammar modifications violate these

assumptions, the transformation function will fail at transformation time. We

believe that this type of function is rarely needed to achieve complete

coverage. (In Section 5 we show how a subtree construction function can be

replaced by a combination of other techniques.)

A final use of transformation functions is to locate nodes in the old tree

that should be recursively transformed. This class of functions is needed to

handle the situations in which a path determined by a static tree expression

is insufficient.

4.2 Achieving Composabiiity

As the implementor issues each grammar-editing command, TransformGen

updates the transformation table as described in Section 4.1. During this

process the implementor can modify the transformation table at any time:

either the intermediate versions of the table between grammar-editing com-

mands or the version of the transformation table after all of the grammar-

editing commands have been issued.

In any case, it is important that the final transformation table correspond

to the entire sequence of grammar changes. We refer to the problem of

encoding a sequence of changes in a single table as the composability

problem. Composability is important because it allows TransformGen to

generate a single-pass transformer for the complete sequence of changes.

Composability can be achieved if each grammar- or table-editing command

can be interpreted in the context of any previous sequence of changes.

Moreover, theoretical considerations aside, it is important that the meaning

of a sequence of composed modifications be clear so that an implementor can

understand the collective behavior. This is particularly important in the

presence of automatic generation of transformation rules.

4.2.1 Transformation Table Mappings. It is useful to think of the gram-

mar modification process as being in a start state, proceeding through a

series of operations that modify the current state, until the goal state is

reached. The start state is the old version of the grammar and the identity
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Transformation mapl.z Transformation rnapz3 Transformation
Table 1 Table 2 Table 3

rnapl.z 0 mapx

Fig. 11. A sequence of table revisions by table mappings.

transformation table, which transforms old databases into identical new

databases. The current state is the most recent version of the grammar at a

particular point in time and the corresponding transformation table. The goal

state is the final version of the grammar and transformation table.

To formalize our description of transformation table modifications, we

introduce an abstract model of transformation table mappings. For each

editing command, we present a transformation table mapping that takes the

transformation table from the current state to the next. Under this model, the

composability problem reduces to the problem of composing transformation

table mappings.

For example, Figure 11 shows a sequence of two revisions to a transforma-

tion table, made by applying the two mappings map ~.z and map2.3, and a

single mapping that is equivalent to the composition of the sequence (the

lower arc). After making a sequence of modifications to a transformation

table, the implementor can reason about the effect of this sequence on the

initial transformation table by thinking in terms of the equivalent composed

mapping.

We express transformation table mappings as pairs of patterns: match

patterns and substitution patterns. A match pattern denotes a production

that was modified, and the substitution pattern denotes how the transforma-

tion table should be modified. When a mapping is applied to a table, every

production instantiation for the production specified in the match pattern

will be replaced by using the corresponding substitution pattern.

Figure 12 shows a simple mapping with a match/substitution pair and its

effect when applied to a transformation table entry. The match pattern is a

template for all instantiations of production A. Al and Az are pattern

variables and denote the first and second component transformations in a

match. This pattern matches the new self construction in the example table.

Al is bound to “Transform old component l,” and Az is bound to “Transform

old component 2.” The substitution pattern describes how to modify the

existing instantiation rules for production A. The instantiation of A is

replaced by an instantiation of B, and the component transformations are

swapped.

Mappings are applied to all production instantiation rules, which may

occur in the new self portion of a rule or the component transformations.
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Transformation Table Mapping

match pattam: substitution pattern:

A =$ B

component 1. Al compocent 1. 4

component z. AZ componenc z. Al

Transformation Table Entry Before Applying the Mapping

production: A
new self: A

component 1: Transform old componenc 1

component 2: Transform old component 2

Transformation Table Entry After Applying the Mapping

production: A
new self: B
component 1: Transform old component 2

component 2: Transform old component 1

Fig. 12. A transformation table mappmg and its effect

Note that the match pattern corresponds to a production instantiation in the

current grammar version, and the substitution pattern corresponds to a

production instantiation in the next grammar version.

Figure 13 shows the effect of applying a second mapping to the final

transformation table of Figure 12. In this mapping, production B is replaced

by production C, which has a new first component. To demonstrate the

composition of mappings, Figure 14 shows a single composed mapping that is

equivalent to the two sequential mappings.

4.2.2 Transformation Table Mappings for Grammar-Editing Commands.

We now reexamine the categories of grammar-editing commands that were

introduced in Section 4.1.1, define the transformation table mappings for

some representative commands, and explore the implications on the compos-

ability problem.

No-ops. The commands that TransformGen treats as no-ops do not modify

the table. These mappings are therefore trivial to compose with others.

Syntactic-Legality Modification. Commands that modify syntactic legality

result in an annotation being added to some part of the table. Since annota-

tions are simply hints to the implementor, they do not otherwise affect the

table, and composition is trivial. Annotations are simply collected in a set for

each new self and component slot in the table. The set insertion operation

prevents duplicate annotations. For example, if a lexical routine is changed

twice, the table entry would still have just one annotation.

Structural Modification The three TransformGen commands in this cate-

gory all modify the component transformation portion of a transformation

table rule. As the following three examples show, each structural-modifica-

tion command composes with previous commands since the corresponding
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Saeond Transformation Table Mapping

match pattern:

B
component 1. l?,

component z . B2

=$

substitution pattern:

c
component 1. META

component z . B,
component 3. B2

Transformation Table Entry Before Applying Second Mapping

production: A
new self: B
component 1: Transform old component 2
component 2: Transform old component 1

Transformation Table Entry Afler Applying Second Mapping

production: A
new self: C
component 1: META
component 2: Transform old component 2
component 3 : Transform old component 1

Fig. 13. A second mapping and its effect.

Composed Transformation Table Mappiwg

match pattern: substitution pattern:

A * c

component 1. Al component 1. META

component 2. AZ component 2. ~
component 3.

Transformation Table Entry Before Applying CompO=d *PPM

production: A
new self: A
component 1: Transform old component 1
component 2: Transform old component 2

Transformation Table Entry After Applying Compo=d Mapping

production: A

new self: C
cor,ponent 1 : META
component 2: Transform old ctimponent 2

componh. nt 3: ,Transf[- .m c.ld component 1

Fig. 14. The composed mapping and its equivalent effect.

transformation table mappings are based solely on the state of the transfor-

mation table before the command is applied and the particular command that

was applied.

The command to delete a component from a grammar production has a

corresponding table mapping to remove the component transformation from

the transformation table. For example, Figure 15 shows a mapping that

deletes the second component of production A. It is easy to see that this
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match pattim: substitution pattern:
A * A
component I AI component 1. Al
component 2. AZ component 2. A3
component 3. As component 3. Ad
. . .
component N-1 . AN, ;;;ponent N-1 . AN
component N . AN

Fig. 15. Deleting the second component of production A

mapping composes with any other mappings that produced the current state

of production A since (1) the match pattern only depends on the current state

of A and (2J the substitution pattern simply discards information to produce

the next state of A.

The command to add a component to a grammar production has a corre-

sponding table mapping to add the new component transformation in the

transformation table. Without additional information from the implementor,

TransformGen can only construct a META node for the new component. Our

previous example in Figure 13 showed a mapping that adds a new component

in the first position. This mapping also composes with other mappings that

produce the current state of production A since (1) the match pattern only

depends on the current state of A and (2) the substitution pattern simply

adds a META node construction to produce the next state of A.

The command to reorder components in a grammar production has a

corresponding table mapping to reorder component constructions in the

transformation table. Our previous example in Figure 12 shows a mapping

that swaps component constructions in positions 1 and 2. This mapping also

composes with other mappings that produce the current state of production

A since (1) the match pattern only depends on the current state of A and (2)

the substitution pattern simply reorders the component transformations to

produce the next state of A.

Major Redefinition. Major-redefinition commands require that we

overwrite some portion of a transformation table entry. Overwriting is inde-

pendent of the previous changes that have been made to the production.

Therefore, the mappings associated with these commands trivially compose

with previous mappings. Figure 16 shows examples of some major-redefini-

tion mappings.

4.2.3 Interactions between Transformation Table Mappings and Direct

Editing. In addition to the table modifications that TransformGen automat-

ically applies as part of the grammar-editing commands, the model of trans-

formation table mapping can be extended to handle the more extensive

modifications that can be made by an implementor directly editing the

transformation tables. This extension takes into account the fact that the

implementor can add new information about how to construct components.

This is expressed through extensions in the substitution patterns of a

mapping.
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Deleting a Production

match pattern
A

component 1. Al
component z . Aa
. . .
component N. AN

=$
substitution pattern
META {Warning: all components

deleted. I

Changing a Valued Terminal ta a Nontmminal

match pattern: substitution pattern:

A * A {Warning: Old value discarded. }
value: Old value component 1. META

component 2. META
component 3. META

. . . . . .
component N. META

Changing a Static Terminal to a Valued Terminal

match pattern: substitution pattern:

A * A
value: UNDEFINED

Fig. 16. Example mappings for major-redefinition commands,

In previous mappings we have used only META and pattern variables as

component transformations in substitution patterns. Additionally, an imple-

mentor can use the following:

—Production instantiation of productions defined in the next version of the

grammar

—Tree expressions which follow the structure defined by the start grammar

version

—Context-dependent transformations, whose boolean conditions may depend

on the old or new database, but no intermediate states

—Default values for valued terminals in the goal version of the grammar,

and

—Subtree transformation functions that return subtrees instantiated using

the goal version of the grammar.

An example of a mapping that uses all of these extensions is shown in

Figure 17. Note that in addition to pattern variables Al through AN and

META constructions, the substitution pattern now contains literal strings

that correspond to the direct editing extensions. The mapping adds a new

production instantiation for the second component of production A and a

conditional transformation for the third component.

This example demonstrates how the implementor’s commands to edit the

transformation table directly compose with previous transformation tables,

by selectively overwriting portions of the table, and reusing information via

the pattern variables. It is interesting to note that a complicated table
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match pattern: substitution pattamx

=$A A

component 1. Al component I Al
component z AZ component 2. Construct B

component I : A,

component 2: C=nstruct C
component 3: Transform

oldnode. right

component 4: f?ETA

component 3. A3 component 3.

if ( IsFlrsto ) then
A3

else
Construct Z

. . .

component N .4N component N . AN

Fig. 17, Example extensions to the table mappings.

produced by an implementor may also be matched by a match pattern. Match

variables can be bound to the table entries as before and reused in substitu-

tion patterns. Therefore, editing commands issued after the implementor has

edited the transformation table also compose.

4.2.4 Summary of Composing Transformation Table Mappings. The previ-

ous examples have demonstrated that we use only a few simple techniques to

ensure composability of TransformGen operations on transformation tables:

—The match patterns in a transformation table mapping correspond to

production instantiations in the current state of the transformation table.

—The substitution patterns correspond to production instantiations in the

next state of the transformation table.

—The pattern variables in the match pattern correspond to component

transformations in the current state of the transformation table.

—The pattern variables in the substitution pattern depend only on pattern

variables in the match pattern.

By making sure that these conditions are satisfied in each of our mappings,

we can be sure that every possible sequence of transformation table map-

pings in TransformGen will compose. Furthermore, this model allows the

implementor to understand and reason about the effects of any sequence of

grammar-editing commands.

5. A SOLUTION TO THE MOTIVATING EXAMPLE

In this section we step through the generation of a transformer using the

example introduced in Section 3.1. The original version of the grammar is

shown in Figure 18. Recall that we would like to change the grammar so that:

—Documentation is associated with each module.

—A module implementation can be written in either C or Lisp.
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Root Production: MODULE

Nonterminals:

MODULE . module-name interface implementation

INTERFACE . imports exporta

IMPORTS . dmport-item>

EXPORTS . <export-item>

Chlesau
module-name = MODULE-NAME

interface . INTERFACE I EMPTY-INTERFACE

imports . IMPoRTS

exporta . EXPORTS

export-item . EXPORT-ITEM

implementation . SOURCE

...

Terminakx
MODULE-NAME . {valued)

lex: lexidentifi,.r

EXPORT-ITEM . [valued)

lex: lexstring

.

Fig. 18. Grammar for a module description environment—Version 1.

—Export items are distinguished as being either procedures, data types, or

variables so that we can perform intermodule type checking.

—Each module may contain multiple versions, and a version number is

associated with each version.

To allow the attachment of documentation to modules we perform three

related grammar changes. First we add a new component to the MODULE

production. Since there are no existing classes that define documentation, we

define a new class, called documentation, to be the class of the new compo-

nent. Finally, we define a new valued-terminal production called DOCU-

MENTATION to serve as the sole member of the new class. The first

modification requires that we add a new child to all MODULE nodes when

we transform them. The last two changes are no-ops with respect to existing

databases since no existing databases depend on the documentation class or

DOCUMENTATION production. It is therefore not necessary to modify the

transformation table for these last two changes. The new definition of the

MODULE production is:

MODULE = module-name documentation interface implementation
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production : MODULE

Fig. 19. Transformation table after new self: MODULE

adding documen tat~on component to
component 1: Transform ola component 1

Module production.
component 2: META
component 3: Transform old component 2
component 4 : Transform old component 3

The updated transformation table entry resulting from the “add compo-

nent” table mapping is shown in Figure 19. Using this entry the first

component of MODULE, module-name, is recursively transformed. The sec-

ond component is the new component, which will be a metanode. The remain-

ing two components are transformations of the corresponding components in

the old database. However, notice that their indices differ to account for the

new second component.

At this point we can decide whether the transformation entry created by

TransformGen is appropriate for this situation. An obvious alternative for the

implementor would be to construct a DOCUMENTATION node with some

default value, perhaps just the name of the module. However, it seems likely

that the implementor would leave the new node as a metanode so that the

user of the environment can supply documentation. Therefore we leave the

automatically generated entry as is.

The next step is to allow either C or Lisp source code. We know that

existing databases contain only C code. To achieve this goal we introduce a

new production called LISP-SOURCE. Since we want to allow Lisp code for

any module implementation, we add LISP-SOURCE to the implementation

class. For the sake of improving the naming, we rename the existing SOURCE

production to C-SOURCE. The rename command changes the name in its

definition in the production as well as all uses in class definitions.

Neither adding a new production nor adding a production to a class can

affect existing databases. Therefore, those two changes have no effect on the

transformation table. When we change the name of a production, Transform-

Gen also changes its name in every production instantiation in which it

appears in the transformation table. For example, the transformation table

entry after changing SOURCE to C-SOURCE is shown in Figure 20.

The next modification allows us to distinguish among various types of

exported items. In the original version of the grammar, exported items were

represented simply as strings with no internal structure. If we wish to add

intermodule type checking, it would be useful to have more structure associ-

ated with these exported items. We therefore need to define new productions

to represent procedure signatures, type declarations, and variable declara-

tions. The transformer will need to convert these strings into pieces of

structure.

The grammar changes are simple. We define three new productions, PRO-

CEDURE-SIGNATURE, TYPE-DECL, and V2LRIABLE-DECL. We also

change the export-item class, so that it contains the three new productions in

its class, and remove the use of the production EXPORT-ITEM. We also
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production: SOURCE
new self: C-SOURCE
. . .

Fig. 20. Transformation table after renaming SOURCE to

C-SOURCE.

production: EXPORTS
n~w self: EXPOR’i’S
lls L: ‘Transform Oia ,ls L { Warning: Class has been modified. )

Fig. 21. Transformation table after modifying the export-ztem class.

delete the production EXPORT-ITEM since we will no longer be using that

production in the new version of the grammar.6

This modification requires the transformer to perform context-dependent

transformations. Depending on the value of the EXPORT-ITEM in the old

database, we decide which production to construct in the transformed

database. As noted in Section 4.1.2, context-dependent changes are beyond

the scope of what TransformGen can automatically create entries for. Never-

theless, let us see how TransformGen has changed the table.

Defining the new productions and adding them to a class do not affect the

tables. However, deleting a production from a class and deleting a production

do. When a production is deleted from a class, each production that uses the

modified class receives an annotation reminding the implementor of the

change. As a result the EXPORTS table entry is modified as shown in Figure

21. When a production is deleted, the transformation table is changed so that

all occurrences of the deleted production are replaced by metanodes. The

entry for EXPORT-ITEM is shown in Figure 22.

The transformation table generated by TransformGen does not do what we

want, but this should not be a surprise because of the context-dependent

nature of the change. In order for the transformer to implement the desired

change correctly, the implementor must write some transformation functions.

One solution is to write a function to construct the subtree required by the

new grammar. This function would parse the value of the EXPORT-ITEM

and construct a different subtree depending on the value. The transformation

table would be changed as shown in Figure 23.7

The advantage to performing the transformation as above is that we only

need to parse the value once. However, there is a major disadvantage if later

changes are made to the productions used by parse _export. If the structure

of exported items is changed, the implementor must modify this function to

reflect those changes. However, if the implementor describes the transforma-

tion using production instantiations in the table, TransformGen will be able

GIn reality we would probably define more new productions and classes to create more detailed

structure, but we ignore those details for this example.

7Note that all transformation functions are implicitly passed two parameters: the node from the

old tree that we are trying to transform and the metanode in the new tree where we are trying to

appIy the transformation. The syntax for function calls does not list these parameters because

the environment implementor has no control over them and cannot change them.
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Fig. 22. Transformation table after deleting EXPORT-ITEM production: EXPORT-ITEM

production. new self: META

production : EXPORT-ITEM
new self: Replace with tree defined by parse_ export ()

Fig. 23. Transformation table after adding call to transformation function

to compose later changes automatically. Figure 24 shows how the transforma-

tion could be done directly in the transformation table.

The disadvantage of the second approach is that we may need to attempt to

parse a value three times before we know how to perform the transformation.

This disadvantage is due to the computational weakness of the transforma-

tion table language, rather than an inherent weakness of TransformGen’s

approach. The advantage is that if the implementor modifies one of the

productions mentioned in this entry, TransformGen will use the composition

rules to correctly update the entry.

The final set of grammar changes will allow us to have more than one

version of each module. Implementation of this change requires the addition

of three productions: VERSIONS, VERSION, and VERSION-NUMBER. We

also need to add three classes corresponding to these productions: versions,

version, and version-n umber. Finally, we need to modify the MODULE

production so that it has versions as a component rather than implementa-

tion. The revised portions of the grammar are shown in Figure 25.

As with the earlier modifications, adding productions and adding classes do

not change the transformation tables. The only change that modifies the table

is the change to the implementation component of MODULE. The new entry

for MODULE is shown in the top of Figure 26.

Unfortunately, this does not quite produce the effect we want. What is

required is a nonlocal restructuring of the database, Specifically, we need to

add two levels to the database. The implementor can accomplish this by

editing the transformation table entry for MODULE to look as shown in the

bottom of Figure 26. This entry says that the fourth child of a MODULE

node should be VERSIONS. Its first child should be a VERSION. The first

component of VERSION should be VERSION-NUMBER with a default value

of 1. The second child of VERSION should be the recursive transformation of

the third child of the original MODULE node, which is the IMPLEMENTA-

TION node. While the automatically generated mechanism is not sufficiently

powerful to support this nonlocal restructuring, the declarative language

used by the transformation tables allows the implementor to get the correct

effect easily.

6. STATIC ANALYSIS OF TRANSFORMATION TABLES

Since TransformGen may be used to transform databases that contain valu-

able information that cannot be reproduced, errors and unpredictable behav-

ior are serious concerns. Therefore, we must be able to check statically
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production : EXPORT- ITEM
if Is Proc Slqnatureo then

new se if: PROCEDURE-SIGNATURE
cOmpOnen L 1: . . .

. . .
else if Is Type Decl () then

new self: TYPE-DECL
. . .

else if Is Var Decl () then
new self: VARIABLE-DECL

Fig. 24. Transformation table with condi-

tional transformations.

. . .
else

new self: META

Nonterminals:

MODULE = module-name documentation interface versions

VERSIONS . aersion>

VERSION . version-number implementation

classes
vereione . VERSIONS

version = VERSION

version-numbsr . VERSION-NUMBER

Terminala:
VERSION-NUMBER . {valued)

lex: lexinfeger

Fig. 25. Grammar changes to support multiple module versions.

Generated Table Entry

ptoduc Lion: MODULE
new self: MODULE
cc,mponent 1: Trar, sforw old cor,ponent 1
component 2: ME’IA
component 3: Transform old component 2
component 4: Transform old component 3

( Warning: The class was changed. ]

Tabla Entry stir Implementor Modification

production : MODULE
new self: MODULE
component 1: Transform old component 1
component 2: META
component 3: Transform old component 2
component 4: VERSIONS

component 1: VERSION
component 1: VERSION-NUMBER

value: 1
component 2: Transform old component 3

Fig. 26. Table entry for adding multiple versions before and after implementor modification.
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whether or not a transformation table will successfully transform all possible

databases as intended, and if not why and where it might fail. In this section

we describe static analysis algorithms that warn implementors about poten-

tial transformation time errors.

It is helpful to first review the aspects of database transformations that

TransformGen addresses in order to understand exactly what static checking

it can be expected to accomplish. TransformGen performs syntactic database

transformations, but does not address the environment semantics. The set of

databases that are both syntactically and semantically legal in the domain

and range of a database transformation is clearly a subset of those that are

simply syntactically legal. In the case of a semantically restricted domain

(i.e., databases that are syntactically correct under the old grammar but

cannot exist due to semantic constraints), our algorithm may warn that the

transformation table does not adequately handle the semantically illegal

databases. It is the implementor’s responsibility to ensure that these cases

will never be encountered. In the case of a semantically restricted range, our

static checking algorithm will not warn that if semantically illegal databases

may be produced by a transformation. The implementor can use context-

dependent transformations to prevent them from being created during trans-

formation. (We describe the four types of static analysis performed by Trans-

formGen next.)

Old-Grammar Cheek. TransformGen guarantees that every terminal and

nonterminal production in the old grammar has an entry in the transforma-

tion table. TransformGen ensures that there is an entry for each old produc-

tion by creating the initial identity table with all the entries, and then

preventing the implementor from deleting table entries.

Root Check. TransformGen checks that the root production from the old

grammar version is transformed into the root production of the new grammar

version.

New-Grammar Check. TransformGen checks that all production instanti-

ation in the transformation table are consistent with the new grammar. For

example, it guarantees that nonterminal transformations have the correct

number of component transformations, and that each production instantia-

tion that occurs in a component transformation is syntactically legal for the

component.

Tree Expression Cheek. TransformGen checks to find which tree expres-

sions may not evaluate to nodes in the old database. Furthermore, it checks

that if the resulting nodes are transformed, they will be legal for the given

component.

The first three checks are straightforward. An error encountered while

doing these checks must be corrected before a transformer can be generated.

However, the last check generally results in warnings rather than errors,

since it is possible that a tree expression can be successfully evaluated for

some databases, but not for others. A transformer can be generated if a
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warning is found by the Tree Expression Check, but an error may occur at

transformation time depending on the state of the database being trans-

formed.

The Tree Expression Check algorithm takes the tree expression specifying

which node in the old database to transform, determines all possible produc-

tions from the old grammar that the tree expression may evaluate to, finds

all possible productions in the new grammar that the old productions maly

transform to, and then checks that all of these productions are legal compo-

nents of their parents.

The TreeExpressionCheck algorithm is shown in Figure 27. It is passed a

start production in the old grammar and a tree expression to evaluate with

respect to the start production. The algorithm constructs the minimal set of

productions in the new grammar such that, if we evaluate the tree expression

with respect to the start production, and then transform the resulting node,

we will get a member of the set.

The first loop of the algorithm iterates over each term in the tree expres-

sion (left to right) to find all possible productions in the old database that are

reachable by evaluating the expression up to that term. We use two sets,

currentset and nextset, in this loop. The set of productions that are reachable

by evaluating the expression up to and including the term from the previous

iteration are stored in currentset. The set nextset is empty at the beginning of

each iteration and is used to collect the productions reachable by the next

term. The productions to be inserted into nextset are computed by evaluating

the term (selected by the switch statement) with respect to each production

in currentset. Warnings are reported if an attempt is made to access the

parent of the root production or a component of a production that is out of

range (e.g., trying to access the fourth component for a production that only

has three).

After all terms in the tree expression have been evaluated, currentset

contains all productions in the old grammar that are reachable from the

startproduction by the tree expression. The algorithm then finds all produc-

tions in the new grammar that can result from transforming productions in

currentset. This set contains all productions that may result from a transfor-

mation rule on the start production and tree expression. We then call

ConstructionCheck to check that each of these new productions is legal at the

given component of the start production.

The ConstructionCheck algorithm is shown in Figure 28. It is passed a

parent production in the new grammar, a component location for that parent

production, and a production to be instantiated at that component location. It

first checks to see if the production to be instantiated is actually in the new

grammar. Then, it checks to see if the production to be instantiated is legal in

the specified component location of the parent. We do this by determining the

class of the component location for the parent and then checking to see if

the new production is a member of this class.

Note that if this check fails, the algorithm issues a Warning rather than an

Error. This is because there maybe no existing database that would actually

have a node that would be transformed to the one in componentproduction,
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TrseExpresaionCheck (atartprodutim, whtihcom~nmt, ~w~sion)
{
currentset . ( slar(produclion }

ne.rlset = [ }

for each term Tin treewxpressum

{
swikh (T)

[
case component:

for each pmduc~on P m currents-et

I
if (P is a terminal production)
Warn(treampression, ‘ha component access for a terminal”, F’, “in term”, 7’);

elm if (P is a variable arity production)

Wam(treaz.rpression, ‘has mmpenent access on a list”, P, “in term”, ~,

else if (component number of T is out of renge for P)
Wmm(treeexpre5sion, ‘%as out of range access”, ?’, “for production”, Pk

for each production N in component class T of P
nextset = TuXtset u [ N ) ;

}

break;
caseparent
for each production P ]n currentset

I
if (P is the root production)

Warn(treeexpre8. &m, “parent accew for root production”, P, “in term”, ~

for each clam C where P is a member
for each production P with C as a component

nextset = nextset u { P );

)
break;

CaM righti
.. similar to “parent” followed by “component”

.
break

caee let%
.. sinular to “parent” followed by “component”

.

break;
1
if (nextset . . ( ))

(
Error(treeeqvwsswn, “ml} never evaluate to a node”);

return ;

)
currentset = ne.rtset;

U%tset. ( ];

resultset = ( );
for each production P in .urrentset
for each rule R in ?.mbleentry for P
resultset = resultset u (new self of R );

for each production P ]n set resuZtset

ConstructionCheck( startProduction, u hichcv,,zp<nent, P);

1

Fig. 27. The TreeExpressIonCheck algorlthm

due to the semantic constraints of the environment. Since TransformGen

cannot statically evaluate environment semantics, it is the responsibility of

the implementor to verify that the Warning condition does not occur.

The static-analysis algorithms presented here have several limitations. The

most obvious is the inability to check the behavior of implementor-defined
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ConstructionCherk@arentproduction, whichcomponsnt, cornponentpmduc: ion)

let newgramnmr bs the new grammar version

if (comporwntpmductkm is not a production of newgrammar)

Error(componentprwdudion, “is not a production of”, newgrammark

let newchss bs the class for whichcwmporwnt of production purentpmductmn in rwwgru mmar

if (componentprvductwn is not a member of nzwclnw)

Warning(cornponcntprodudion, “is not a member of”, n<urhss);

1

Fig. 28. The ConstructionCheck algorithm.

transformation functions called from a transformation table. It is, therefore,

the responsibility of the implementor to check that transformation functions

are correctly implemented.

A related issue is that the boolean conditions for selecting rules in a table

entry or a component transformation are currently expressed through imple-

mentor-defined transformation functions. Therefore our algorithm treats

alternative rules guarded by boolean conditions as nondeterministic alterna-

tives. That is, our algorithm does not attempt to analyze the conditions that

must hold for each rule to be selected, but rather assumes that any rule

within a group of alternatives may be selected under any condition. Again, it

is up to the implementor to determine whether or not the boolean conditions

guarding the rule will prevent an error at transformation time. In any event,

the transformer will not allow implementor errors to corrupt a transformed

database. The transformer guarantees that only syntactically legal databases

are built, and implementor errors in the transformation functions that are

encountered at transformation time will be detected and reported. It is,

however, the implementor’s responsibility to ensure that transformed

databases correspond to the semantic rules of the new environment.

It is possible that, due to an error in a transformation table, an infinite

mutual recursion may occur during the transformation of a database. For

example, if the transformation of one node calls for the recursive transforma-

tion of a sibling in a component transformation, and if the sibling calls for the

recursive transformation of the first node in one of its component transforma-

tions, then the transformer will attempt to build an infinite branch in a new

database tree. As part of the future work on TransformGen, we need to fully

characterize the problem and determine if there is a means of detecting

infhite recursion in transformation tables.

Despite these drawbacks, static analysis is an essential tool to be used

when generating transformers. Since the new tree created by the transformer

is constructed top-down, all nodes except the root will be constructed as a

component of another node. The transformer guarantees that a new root will

be created (using Root Check) and that each component will be correctly

constructed, or a warning will be produced by the static analysis. Therefore, if

the errors and warnings identified by static analysis are examined and

corrected as necessary, and no subtree transformation functions are used,
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TransformEn~ne (data&se) returns tree

‘ let thetree bs the bee constructed when reading databose

let theusrsion bs the grammar version used by thetree

while (theuersion is not the current version of the grammer)

(
let newtree be a new empty tree for version theuerswn+ 1
TransfonnNode (root of thetree, root of newtreeti

let thdree bs nzwtree

let thaersiort be theuersion + 1

1
return thetree;

1

Fig. 29. The TransformEngine drwer.

then the generated transformer is guaranteed to construct a syntactically

correct tree consistent with the new version of the grammar without report-

ing any transformation time errors.

7. THE TRANSFORM ENGINE ALGORITHM

We now turn our attention to the second phase of the TransformGen process,

where the transformation engine interprets the table provided by Transform-

Gen to convert a database from one version of a grammar to another. In this

phase, a given transformer is simply used as a front-end to a Gandalf

structure editor.

When a user invokes an editor on a database, the database header is

examined to determine which version of the grammar the database uses. This

information determines whether transformation is required, and, if so, which

transformer(s) to apply. If the database does not use the most current

version, we perform a multipass transformation. Each pass updates the

database to the subsequent version. Thus if a database is three versions out

of date, we use three passes of the transformation algorithm. For small

databases, we transform the entire database. However, ALOE environments

typically divide large databases into segments [Krueger et al. 1989]. (A small

database is typically the size of a procedure, while a large database may

represent all the modules composing a large program.) For segmented

databases, we transform individual segments as intersegment references are

followed, rather than the entire database at once.

A single pass of the transformer constructs a new database in a top-down

fashion using information from the old database, the transformation table,

and a new grammar. We start by first building a new database tree with a

metanode at the root, as shown in the TransformEngine algorithm of Figure

29. We then consult the transformation table entry for the root production of

the old database tree to determine the root production in the new database.

TransformNode transforms a node and recursively transforms the node’s

components. Therefore the entire database is transformed when the call to

TransformNode completes.
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Transform Node (o&ode, newmeta )

I
let rule be the first transformation rule in the entry for ofdnode’s production whose condition

evoluates to true

if (w& is an instantiation rule)

ApplyInstantiationRule (oldnode, rwwmeta, rule);

elsa if (de is an implementor-defined function)
ApplyFunctionRule (oldnoa%-,newmeta, rale~

else

ReportErrorAtNode(“No applicablerule for node.-, newmeta);

1

Fig. 30. The TransformNode algorithm.

ApplyInstantiationRule (okhoo!e, newmzta, rule)

(

let ncwprodaction be the production specified by ruk

let newualu be the value spedied by ruk

if (instxmtiation of newproduction with value ne-wualw is syntactically legal at newmeta)

{

)

let newnode be a new node with production newpmducttin and vulue newvalue

place newnode in the databnse at na.urncta

Transform Components (oldnode, ne.onode, ruk);

eke

)

The

rithm,

ReportEmorAtNode (“Synta,:,, ally Illegal Insti.nt)atlon a! ’kmpti,d at ncde.”, newrneta);

Fig. 31. The ApplyInstantiationRule algorithm.

heart of the transformation algorithm is the recursive-descent algo-

which relies on three subroutines: TransformNode, ApplyInstantia-

tionRule, and Transform Components.

TransformNode is shown in Figure 30. To transform an individual node,

we need to determine which rule in the transformation table entry for the

node’s production to apply. The entries are indexed by productions from the

old version of the grammar. For each entry there may be multiple rules. We

apply the first rule whose condition evaluates to true.

There are only two types of rules possible. If the rule specifies a specific

production to instantiate, we call ApplyInstantiationRule (shown in Figure

31). If it specifies an implementor-defined function to call, we call Apply-

FunctionRule (not shown due to its simplicity). If no rules evaluate to true,

then we do not transform oldnode. Instead the metanode passed in as

newmeta remains unchanged, and the user receives an error message.

ApplyInstantiationRule, shown in Figure 31, interprets production in-

stantiation rules. A production instantiation rule consists of the name of a

production from the new version of the grammar, a rule for providing a value

for the production (if required), and rules for constructing each child of the

node in a new database. We construct a node with the new production and
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value (if required) in the new database. Then we apply the rules for the

components to get values for the new node’s children. Note that the test for

syntactic legality is actually unnecessary in most cases since TransformGen

checks syntactic legality as the transformation table is constructed. However,

it is required in situations in which TransformGen issued warnings that a

transformation might be syntactically illegal depending on the state of the

trees encountered, such as when a tree expression is used to identify a node

to recursively transform.

TransformComponents, shown in Figure 32, creates a value for each

component of a newly created nonterminal. The component transformation

algorithm is very similar to the node transformation algorithm already shown

in TransformNode. The major exception is that there are three potential ways

of getting a value for a component. As with node transformation, the imple-

mentor can specify a particular production to instantiate or an implementor-

defined function to call. Additionally the implementor can request the recur-

sive transformation of some node from the old database using a tree expres-

sion. To interpret a recursive transformation rule, we need to find the rule

associated with the production of the node we wish to transform, in this case

the third component of oldparent. To do this, we simply call TransformNode

recursively to transform the desired node from the old database.

The expected performance of the transformation algorithm is O(n) where n

is the number of nodes in the new database. It is linear since we evaluate at

most two rules for each node in the new database: one in TransformCompo-

nents, and if the node is created by a recursive transformation, we also apply

a rule in TransformNode. We cannot place an upper bound on the complexity

of transforming a database, since the implementor can write arbitrarily

complex transformation functions.

8. CASE STUDY

Since TransformGen’s creation in 1986, it has been used to create new

versions of each environment used within the Gandalf project. To provide a

more concrete understanding about how TransformGen is used in practice,

we present a case study describing the transformation of the ARL environ-

ment [Ambriola et al. 1984] from version 1 to version 2. ARL is a tree-ori-

ented language for describing the semantic processing in Gandalf environ-

ments. It is distributed with the current Gandalf distribution and is used at

dozens of academic and industrial institutions around the world.

The ARL grammar contains over 150 productions and is now in its fifth

version. Changing from version 1 to version 2 of ARL required 10 changes to

the ARL grammar. These grammar changes affected 72 productions and 9

classes. One and one-half hours were spent making changes to the ARL

grammar and editing the transformation tables. The transformation tables

contained 36 modified entries. Of these, TransformGen correctly generated 26

entries, While it was necessary to write 50 functions to assist in the transfor-

mation, all of these functions were extremely simple. In particular, 48 of

them were single-line boolean functions that examined one node in the old
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TransfOrmCumponente (oldparent, newp+vent, rule)

‘ for each component C of newpamnt

(

let componentruZe be the first component role of rule for component C whcee condition evaluates
to true

if (componentrwle is a recursive transformation)

let okinouk be the node referenced by the expression in the transform statement

TransformNode (oldnode, C);

else if (cwmponentndeis an instantiation rule)

ApplyInstantiationRule (oldparent, C, comporwntrule);

elea if(componentnde is an implementor-defined function)

ApplyFunctionRule (oldpmwnt, C, rule);
eke

ReportErrorAtNode (“No applicable rule for component.’”, C);

)

1

Fig. 32. The TransformComponents algorithm

database and could have easily been eliminated by some simple improve-

ments in the transformation table language.

It is useful to consider each of the ARL modifications in which the tables

generated by TransformGen were not correct. Each of these modifications

present a different type of grammar change that exceeds the capabilities that

are currently automated and requires implementor intervention. While im-

plementor intervention is required, the actual table modifications made by

the implementor are quite simple. Thus the entire process of generating a

transformer remains a simple one.

The ARL grammar changes for which TransformGen could not automati-

cally generate transformations are the following:

—Replacing a production with a set of productions

—Creating a default value

—Adding a structural level to the database

—Merging multiple nodes into a single node.

The difficulty in replacing a production, call it A, with a set of productions,

{B, C, D}, is that the transformer must decide whether to construct B, C, or

~ in the new database when it encounters production A in the old database.

Essentially, the transformation table must identify the conditions under

which each new production should be chosen. Since TransformGen generates

tables solely based on the grammar modifications, it cannot add conditions to

the tables, since that requires understanding the meaning of the productions.

In the conversion of ARL, we were replacing a valued terminal with a set of

static terminals. The choice of which static to build depends on the value of

the original terminal. As a result it was necessary to write boolean functions

to examine the state and decide on a particular production to use. The

original production was:

FIELD-NAME = {valued]
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ARITY = ( static)

Fig, 33, The new static productions. CLS = ( static)

...

production : FIELD-NAME
if IsArityo then

new self: ARITY
else if Is CIS() then

new self: CLS

. . .
else

Report “Unexpected value for a FIELD–NAME. “

Fig. 34. Converting FIELD-NAME to one of a set of static terminals.

Figure 33 shows a subset of the static productions that replaced it. Figure 34

shows the corresponding transformation table entry. The entry consists of a

list of rules that each look for a different value. If the value is something

other than what we expect, an error is reported at transformation time using

the Report command. This command prints an error message and highlights

the node in the new database that we were trying to transform. 8 Figure 35

shows the body of one of the boolean functions.

Another change that required editing of the transformation table involved

providing an initial value for a new component of a production. By looking at

the grammar modifications, TransformGen knows that a component has been

added. However, it has no way of knowing what a reasonable initial value for

the component should be. It therefore leaves the component as a metanode

and expects the user to provide the value. The implementor can provide the

initial value instead of the user by a simple modification to the transforma-

tion table.

In ARL, the original version of the production was:

DAEMON = daemon-name parameters

The new version of the production is:

DAEMON = daemon-name parameters

TransformGen generated a table entry that

event-part

declarations event-part

would leave the new component,

declarations, as a metanode, shown in Figure 36. The implementor made the

modification shown in the bottom of Figure 36 in order to provide an initial

value. The value specified is an empty list of declarations.

A third type of grammar change that is not currently automated in

TransformGen is one in which an existing structure is nested inside another

structure. This is an example of a more general problem of nonlocal restruc-

8In reality, the implementor would probably want to call a function to report the error, so that an

error message could be constructed that would indicate what the value was in the old database.
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booleanfunction IsArity (nodeoldnode,newmeta)
P Return true if the value of oldnode is the string “arity” “/

return StringEq (oldnode.value, “arity”);

Fig. 35. Simple boolean function.

Generated Table Entry

production: DAEMON
new self: DAEMON
component 1 ‘rrar)s form old component :
component 2: ‘rrans form oia component 2
comoonent 3: META
component 4: Transform old component 3

Fig. 36. Table entry for a new compo-

nent before and after implementor
Table After Implementor Modification modification.

production: DAEMON
new self: DAEMON
component 1: Transform old component 1
component 2: Transform old component 2
component 3: DECLARATIONS

List : empty
component 4: Transform old component 3

turing of the data. In the general case, moving data around might require

arbitrary computation and cannot be simply derived by examining the gram-

mar changes. In the current version of TransformGen, no nonlocal restructur-

ing is automated.

In the ARL conversion, we were allowing a list of nodes where previously

only a single node was legal. As a result, the transformation tables needed to

be modified to build the extra level for the new list production, and transform

the old node as an element of the list. Originally a CASE-STATEMENT

allowed each part ( CASE-ELEM) to test only one value as below:

CASE-ELEM = value statement

The new version of CASE-ELEM allows us to attach multiple values to each

statement.

Nonterminals:

CASE-ELEM = values statement

VALUES = (value)

Classes:

values = VALUES

The transformation table entry generated by TransformGen is shown in the

top half of Figure 37. This entry specifies that the old node from the uahe

class should be recursively transformed into one from the ualues class. It also

~nnotatw tlm entry with a warning mnmrning the clmm ch~nge. A simpl~

editing change, as shown in the bottom half of Figure 37, adds the list

structure that is desired.
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Generated Table Entry

production: CA SE-ELEM

new self: CASE -ELEM

cOmp Onen L 1 : Transform ola cz,nponent 1

{ Warning. Class has bee- modified )

component 2: Transform old csmponent 2

Table Entry After Implementor Modi6cation

production: CASE–ELEM
new self: CASE-ELEM
component 1: VALUES

component 1: Transform old component 1
component 2: Transform old component 2

Fig. 37, Table entry for embedding a value into a list before and after Implementor modifica-

tion.

The ARL conversion presents us with a second example of nonlocal restruc-

turing. In this case, we wanted to merge multiple nodes into a single node. In

the old version a COMMENT production was defined to be a single-line

comment. In the new version a COMMENT was allowed to be multiple lines.

This change was achieved by modifying the lexical routine attached to the

COMMENT production. This transformation actually required no grammar

changes. Therefore, the default transformation provides a l-l identity map-

ping between old comments and new comments, ignoring the new functional-

ity supported by comments. The default entry is shown in the top of Fig-

ure 38.

While it would be syntactically legal to leave all existing comments as

single-line comments, it would be inconvenient from the user’s point of view.

Therefore, we wanted to combine consecutive single-line comments in old

databases into single multiple-line comments in the new database. This

involved writing a transformation function to find the consecutive comments

and combine them. The transformation table as modified by the implementor

is shown in the bottom of Figure 38. If we are at the first comment, we create

a COMMENT node whose value is the concatenation of the values of all

consecutive comments, separated by new lines. When we try to transform the

remaining comments, we want to replace them with nothing. This is achieved

by specif~ng nil in the table. If nil is encountered when transforming a list

child (as will be true for comments), it means that there should be no

corresponding child in the new database. If it is encountered when transform-

ing a fixed. arity eompormnt, it i~ equivalent to META.

Our experience with TransformGen has shown that TransformGen is a

powerful tool for alleviating the problems of structure modifications. In the

past, changes such as those made to the ARL grammar would have invali-

dated virtually every one of the hundreds of programs written using the

earlier version. Now instead of apologetically informing our colleagues that

they either must throw away their existing code or make do with the old

inferior release, we can send them the new grammar together with the

transformer produced by TransformGen.
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Generated Table Entry

production : COMMENT
new self: COMMENT with old value

Table Entry After Implementor Modification

production: COMMENT

if IsFirst Comment () then
new self: COMMENT with value defined by Mezge Cormnents

else
new self: nil

Fig. 38. Table entry for merging consecutive comments before and after implementor modifica-

tion.

9. EVALUATION

We now reflect on some of the key design decisions. In many cases there are

reasonable alternatives to the decisions we made: some of these were explic-

itly rejected; others set the stage for future extensions of TransformGen.

The Usefulness of an Environment. Fundamental to our approach is the

idea that an implementor modifies a grammar in the context of an environ-

ment that can monitor those changes and incrementally build a transformer.

In adopting this approach we explicitly rejected the alternative of attempting

to infer the changes (made, say, with a text editor) by comparing the initial

and final versions of the grammar. As we have illustrated, the ability to

monitor and control the process of grammar modification provides many

benefits that would be difficult to achieve with the alternative. First, the

implementor can use the commands of TransformGen to disambiguate differ-

ent interpretations of a change that would lead to quite different tree

transformations. Second, the environment guides the implementor by provid-

ing a specific repertoire of commands. Third, the environment provides

incremental feedback and consistency checking, so that errors are detected

and reported early in the modification cycle.

Lazy Transformation. TransformGen adopts a lazy approach by trans-

forming trees when they are first accessed by a modified environment. There

are, however, other plausible times when old trees could be transformed into

new ones. An eager approach might transform all trees as soon as the new

environment has been formed (or even earlier, as the environment is being

modified). We rejected this alternative as being both impractical and undesir-

able. It is impractical since each Gandalf tree is stored as a separate

database. The database associated with a particular environment can be

dispersed across many directories and machines. In practice it would be

impossible to locate all the databases associated with a modified environ-

ment. It is undesirable since some users may prefer to use the old version of

the environment: their trees should not be converted at all. On the other

hand, using our approach we do run the risk that a transformation may

encounter an error years after the changes have been made.
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At the other extreme, a tree could be transformed incrementally as a user

accesses nodes. This approach has the advantage that costs of conversion are

amortized across the use of a database, rather than being paid up front on

entry. This is particularly attractive for large databases where transforma-

tion time is not negligible. However, the extreme case of node-by-node

transformation is impractical—since transformations need not be local—and

costly—because of the additional bookkeeping overhead in time and space.

On the other hand; as we described earlier, in practice Gandalf databases are

naturally structured in “segments, ” each of which may be defined by a

different grammar [Krueger et al. 1989]. Since transformations are typically

local to a segment, and the bookkeeping overhead is small (relative to the size

of the database), we can transform databases a segment at a time. (Interac-

tions between segments cause no problem in this scheme because whenever a

node within a segment is accessed the entire segment is transformed.)

An additional possibility that we have considered is to combine segmented

transformation with opportunistic processing. Accessed segments would then

be transformed as needed; however, the environment would process remain-

ing segments in the background during slack periods of computation.

It is worth noting that some care must be taken to ensure that the

transformation interacts appropriately with other database functions such as

concurrent access and transactions. In particular, long-term transactions can

be problematic if it is possible to change a grammar when some user is in the

middle of a transaction.

Linear Ancestry. One of the basic assumptions that we made in the design

of TransformGen was that environments evolve in a linear fashion. This was

motivated by the typical use of Gandalf environments in which an implemen-

tor augments an environment that is shared by a group of software engineers.

Given this assumption, updating of trees based on multiple environment

revisions is relatively straightforward, since the transformers can simply be

applied in succession.

It turns out, however, that there are cases in which the changes to an

environment diverge as separate branches of a revision tree. In such cases a

database that is transformed to be valid in one branch cannot be transformed

into a grammar that is correct in another branch. To accomplish such a

transformation would require the ability to merge the transformation tables

from several sources. This appears to be a fruitful avenue for future research.

High-Level Commands. Our original goal was to develop a number of

high-level commands for modifying grammars, together with the associated

powerful transformation rules. However, we began with a collection of rela-

tively low-level commands (itemized in Section 4). Surprisingly, these have

been largely sufficient for most purposes. This has been true, in part, because

the implementor can augment the transformation rules, and hence improve

on the simple default transformations. But it may also be the case that a

large repertoire of commands is simply not needed. On the other hand, we do

feel the need for certain commands that would result in nonlocal restructur-
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ing of the tree. In particular, it would be useful to have commands that would

add or remove levels from a tree.

Another useful extension of TransformGen would be to improve the expres-

sive capabilities of the transformation tables in order to reduce the need for

writing transformation functions. The most promising extension would be to

allow simple conditions to be written inline. For example, if this capability

had been available when creating the ARL transformer, we would only have

needed to write 2 of the 50 transformation functions, since the others were all

simple conditionals.

Treatment of Errors. As discussed earlier, TransformGen allows the im-

plementor to include transformation rules that may not be valid in all

circumstances. This is typically done for two reasons. First, the implementor

may know that certain syntactically valid trees will never occur in practice,

and hence the transformation will succeed on any encountered tree. (This is

possible since tools and other semantic-processing routines may prohibit

certain syntactic constructions from an environment.) Second, certain infor-

mation may best be obtained from the user of the environment, rather than

the implementor. This might be the case for default values of some nodes, or

in the case when information would otherwise be thrown away by the

transformation.

Our experience with this decision is that transformation time errors rarely

occur, and that the added flexibility is well worth the potential inconvenience

for users of the environment. However, it may be that there are circum-

stances in which stronger guarantees should be made by TransformGen. For

example, in a novice programming environment the transformation process

should be completely transparent. A useful—albeit simple—extension of

TransformGen would be to allow the implementor to set the level of static

checking to exercise more control over the number and kind of transformation

time interactions that could take place for a given set of transformation rules.

Another extension would include a facility for exception handling, again an

area for future research.

Semantic Processing. Currently TransformGen provides no assistance in

modifying semantic processing and other tool functionality associated with a

changed environment. If, for example, an implementor deletes a component

from a production in a grammar, then any existing routine that attempts to

access that component will be in error. It is up to the implementor to discover

this fact and change such routines appropriately. We view this as an impor-

tant limitation in the current approach.

It may be possible to extend TransformGen to provide some form of

semantic assistance. While no transformer can completely automate the

propagation of syntactic modifications into associated semantic changes, it

may be possible for the transformation environment to warn the implementor

about inconsistencies introduced by a grammar change. The ability to do this

relies on the fact that semantic processing and other tool functionality is

described in a notation that makes its dependence on structure explicit.

Semantic routines written in ARL typically use class and production names
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to navigate through the database. By analyzing such expressions, Transform-

Gen could identify at least some uses of modified productions and classes.

Attribute equations used by other environment generation systems also have

this property.

10. RELATED WORK

While there has been little research devoted to solving the problems of

maintaining structure-oriented environments, there are two areas of related

work to discuss. The first deals with the tree transformations used by

compilers. The second area of interest is the transformations supported by

other types of databases.

10.1 Tree Transformation in Compilers

Compilation can be thought of as a series of transformations on languages,

where each transformation typically augments the previous with a set of

attribute-value pairs at each node. Attribute grammars have been used to

describe the transformations that modify the syntactic form of an abstract

tree and thereby convert a tree defined by one context-free grammar to a tree

defined by another [Drossopoulou et al. 1982; Keller et al. 1984; Leverett et

al. 1980; Lewis et al. 1984; Monke et al. 1984].

These approaches to tree transformations differ from our work on Trans-

formGen in two important ways. First, our focus has been on automating the

definition of a transformer. Thus automatic composition and coverage have

been important considerations in our work. In contrast, compiler techniques

require an implementor to define a set of pattern-matching associates and

correspondences between input and output grammars. The implementor

must incorporate and integrate all changes by hand, usually with complete

and detailed knowledge of the grammar definitions. This manual approach

may be reasonable in the context of building a compiler, which must be

carefully crafted to produce both efficient and semantically correct grammar

transformations. However, it is impractical in our setting in which an imple-

mentor is encouraged to make numerous modifications to program grammars

while developing a programming environment.

The second major difference between our work and compiler techniques is

the emphasis on environment support. Given that we provide an environment

for the implementor to use in the generation of programming environments,

we believe it is essential that we also provide support within the environment

for changing environment descriptions.

10.2 Transformation of Databases

Databases have existed for a long time, and so also has the need for database

transformation. TransformGen can therefore be reasonably compared to simi-

lar work in the transformation of relational databases, knowledge bases, and

object-oriented databases.

Sockut and Goldberg [1979] survey relational database systems from the

perspective of the types of reorganization they support. Our notion of trans-
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formation correspond to two levels of reorganization in their taxonomy:

infological reorganization and string reorganization. Infological reorganiza-

tion involves changes to schema. String reorganization involves changes to

relationship membership. For example, adding an attribute to a schema is an

example of infological reorganization. Changing a relationship from 1-1 to

l-many is a string reorganization. The systems surveyed typically offer

support for a few simple changes, such as adding and deleting attributes.

Most systems allow the database implementor to write custom programs on

an ad hoc basis to perform more interesting transformations. While they

allow implementor extensions they do not provide any real support for the

development of those extensions as we do.

Balzer [ 1985] has addressed database transformation in the context of

knowledge representation systems. His system provides a language for mak-

ing structural changes to the description of a knowledge representation

system (or “domain model”). It also provides tools for mapping those changes

into corresponding transformations on existing data. Balzer uses an eager

transformation approach. As soon as a change occurs, his system makes the

appropriate modifications to the knowledge base. Unlike his approach, Trans-

formGen allows multiple changes to be composed into one transformation

pass of the database. Also, TransformGen can potentially incorporate a much

wider range of high-level changes than the fixed repertoire provided by

Balzer’s system. Additionally, TransformGen contains hooks for arbitrary

implementor extensions. Finally, since TransformGen performs lazy transfor-

mation, it does not require the overhead of maintaining links between a

production and all of its instances as Balzer’s system does.

One final class of databases to consider is object-oriented databases. Orion

[Banerjee et al. 1987], GemStone [Penney and Stein 1987], and Oz

[Barbedette 1991] have taken a fairly traditional approach to the role of

database transformation. When a class definition is changed, objects of that

class need to be transformed to correspond to the new definition. These

systems provide automation for certain types of changes, such as deletion of

instance variables from a class. Of these, Oz is the only system to support

extension of the transformation process to more interesting types of changes,

such as moving an instance variable from one class to another. Oz also

analyzes changes with respect to their effects on methods. In particular, it

identifies methods that reference deleted classes or attributes/methods of

classes, methods that must be type-checked following a change, and methods

that are still type-safe but whose behavior may have changed due to changes

to methods they call. OTGen [Lerner and Haberman 1990] is a system we

designed based on the concepts developed in TransformGen to support flexi-

ble transformation of object-oriented databases. As such it has many of the

features of TransformGen, but is aimed at a different class of databases.

Another approach to evolution of object-oriented databases relies on the

simultaneous maintenance of multiple versions of classes and objects. This

approach was first proposed by Skarra and Zdonik [1986]. Rather than

transform objects whose class definition has changed, they support multiple

versions of the same class within a single database. The advantage of this
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approach is that the database does not need to be transformed, and existing

code can operate on existing objects without being changed. Each class has an

interface that is a union of the interfaces of all the versions of that class.

Compile-time type-checking is performed against this union. However, any

individual object will represent only some subset of the interface, defined by

the particular class version it is an instance of. Therefore, they allow a

programmer to associate error handlers with a class to handle application of

operations to objects of the wrong version. In effect, some of the type-checking

is deferred until run-time, since an object’s version cannot be known until

then. Bratsberg [1992] uses views to support class evolution. In his model, a

class consists of an intent (its definition) and an extent (the set of objects).

Evolution is modeled by allowing an object to belong to more than one extent.

To be a member of more than one extent, there must be attribute and

operation consistency relations to map between the corresponding intents.

These multiversioning approaches are more flexible than the one proposed

here, since they allow the coexistence of both old and new data and tools. On

the other hand this flexibility comes at a cost: it requires the additional

overhead (in both space and time) for maintaining and accessing multiple

class and object versions. Furthermore, there is little support for automatic

development of functions to maintain consistency between versions of objects.

One final comparison should be made between all the database systems

described in this section and our structured databases. With traditional

databases, there is typically a 1-1 mapping between a database description

and a database. Therefore, it is reasonable to require a database administra-

tor to take responsibility for transforming the database and handle any

errors that occur during transformation. As databases become larger and

more distributed, this approach may no longer be feasible. With our struc-

tured databases, there is typically a l-many mapping between a database

description and databases. There can easily be thousands of databases for

a single database description, and they can be located at many sites. Without

a metadatabase to keep track of all these databases, it is not possible for a

database administrator to perform all the transformations and address the

problems that might arise. Instead we must provide an environment that

supports the development of robust transformers that can handle problems

directly rather than require the user to become involved in the transforma-

tion process. We believe that TransformGen provides the support necessary

to build such robust transformers.

11. CONCLUSION

While the techniques described in this article were developed specifically to

solve problems of grammar evolution for structure-oriented environments,

many of the results carry over to other systems. In particular, our experience

indicates that there are three essential ingredients to a successful approach

to maintenance based on structural transformation. First, the objects to be

transformed must be represented in a structured form as described by some

formal notation. Second, it is important to provide automated support for the
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development of the transformers. This support must be able to translate type

changes to consequent actions that can be performed during the object

transformation process. Third, it must be possible for the person who is

making the change to augment the automatic mechanisms to handle special

cases.

The results of this approach, at least within the domain of structure-ori-

ented environments, have been encouraging. We have been able to make

substantial improvements to existing environments that would have been

infeasible using the manual, ad hoc techniques available before Transform-

Gen. The generator for structural transformations is a powerful tool that can

be built relatively easily by extending existing environment generators. Hav-

ing long promoted the use of structure-oriented environments for rapid

prototyping, we can now do so with the confidence that these environments

can also be maintained.
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