Programming Process Coordination in Little-JIL

Barbara Staudt Lerner, Leon J. Osterweil, Stanley M. Sutton Jr., and
Alexander Wise

Computer Science Department
University of Massachusetts
Ambherst, Massachusetts 01003
{lerner, ljo, sutton, sandy}@cs.umass.edu
http://laser.cs.mass.edu **

Abstract. Process programming languages have not been readily adopt-
ed by practitioners. We are addressing this problem through the develop-
ment of Little-JIL, a language that focuses on the coordination aspects
of processes and provides a visual representation, yet one that is rigor-
ous enough for execution and formal reasoning. We have used Little-JIL
to program several software engineering processes, knowledge discovery
processes, and are working on processes to coordinate robot teams. We
believe the simplicity gained by focusing on coordination and visualiza-
tion should make Little-JIL both readily adoptable and widely useful.

1 Introduction

Process programming remains a challenging problem for software process tech-
nology support. The complexity of process languages and the effort of process
programming using these languages has hindered both the development and
adoption of process programming technology. We are addressing these problems
of process language design and development through a three-part strategy:

1. Focusing on a subset of process requirements related to coordination, in
particular, to the coordination of activities and agents

2. Defining appropriate abstractions and language constructs to capture impor-
tant coordination aspects of software processes

3. Devising wvisual yet rigorous representations to aid adoption of the language

By focusing on coordination, we address a necessary aspect of all software
processes. Moreover, our experience suggests that the programming of activity

** This research was supported by the Air Force Research Laboratory/IFTD and the
Defense Advanced Research Projects Agency under Contract F30602-97-2-0032. The
U.S. Government is authorized to reproduce and distribute reprints for Governmen-
tal purposes notwithstanding any copyright annotation thereon. The views and con-
clusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of the Defense Advanced Research Projects Agency, Air Force Research
Laboratory/IFTD or the U.S. Government.

and agent coordination is largely sufficient for software processes in many con-
texts. Additionally, we can reduce the complexity of the language, simplifying
its definition and development, and facilitating its use and evaluation.

We have identified the following language features as especially important for
programming coordination: 1) a multi-paradigm control model, 2) a few basic
but general constructs for proactive control, 3) preconditions and postconditions
on process steps, 4) resource specification, modeling, and management, 5) flex-
ible exception handling, 6) explicit, controlled data flow, 7) agent specification,
binding, and delegation.

The main features missing from the above list are the usual features of a
general programming language, such as imperative commands and data type
definitions; also missing are constraint (or rule) specifications, common in process
languages. These omissions simplify language definition, implementation, and
use. Moreover, we have found that many processes decompose into high-level
coordination and low-level computations. Coordination operators are found in
some process languages (e.g., [1,2]) and blackboard languages (e.g., [3]). We
propose using a coordination language to program the high-level coordination
aspects, while using a computational process language (such as JIL [1]) or a
general programming language to implement the computational elements.

Finally, to facilitate use of the language, we have adopted a visual syntax. An
important characteristic of this syntax is that it has rigorous semantics that allow
it to be executed. While there are many graphical process definition languages,
most lack adequate semantic depth or rigor to support execution. Exceptions
include Petri-net-based systems and a few others (e.g., [4-7]). A distinguishing
characteristic of our approach is the style of program representation, which em-
phasizes the hierarchical composition of individually simple steps rather than
the typical approach of arbitrarily complex, nested flow graphs. In our experi-
ence this has helped to promote the clarity of our process coordination programs
without sacrificing expressiveness.

2 Example

Little-JIL is a process language we have developed according to the three-part
strategy outlined above. To demonstrate the coordination abstractions of Little-
JIL, we use a high-level description of Booch’s object oriented design (BOOD). In
BOOD, designers first identify classes and objects, then identify their semantics
and the relationships between them, and then design the internal implementation
of the classes. This process repeats until all of the classes are elaborated in
sufficient detail.

Figure 1 shows a partial implementation of BOOD. We highlight how Little-
JIL supports coordination by discussing the example, leaving many details un-
explained. Also, it is important to realize that this is not a complete definition of
BOOD. The Little-JIL editor allows the user to selectively hide information to
avoid a cluttered presentation and allow a concise high-level picture of a process.
A detailed understanding is gained by selectively displaying detail.

agent: Project_Manager

T---e ¢ NoMoreAvailable
Multi-Designer Booch

-

- ¢ NoMoreNeeded

Requirements_Update
agent: Designer Propagate_Changes
LN

Booch Multi-Designer Booch

<J More_Abstractions_Needed

\Cﬁss_Diagram
No_More_Abstractions_Needed

Identify_Semantics Identify_Relationships Implement ‘A

dict: Data_Dictionary
'~ L
Identify_Classes_and_Objects

Reuse_Implementation Custom_Implementation
LRC N)

Reuse_via_Inheritance Designing_for_Java

Reuse_via_Delegation
LU

- ’vReuse_via_Parameterized_Class
- L)

!
Not_Designing_for_Java

Fig. 1. A Multi-User Booch Process (BOOD) in Little-JIL

Each step in a process is visually represented by a step name surrounded by
several graphical badges which represent aspects of the step. The black bar below
the step represents the control of a step’s substeps. The left-most badge in the
step bar defines the proactive control flow. For example, step Multi-Designer
Booch has a parallel badge which allows, but does not require, the substeps
to be performed in parallel. Step Booch contains a sequential badge indicat-
ing that its substeps should be executed from left to right sequentially. Step
Reuse_Implementationis a choice indicating that the agent assigned to the step
should choose one of the substeps as a means of completing the task. Implement
is a try step which requires alternatives to be tried sequentially until one succeeds.
The arrows next to the arcs represent data flow between steps and substeps.

Resources are part of a step interface, identified by a circle above a step
name. (Step interfaces also include declarations of formal parameters, local ob-
jects, and exceptions thrown, which are omitted from the figure.) By default,
resources are acquired in mutual exclusion, but we are investigating a variety
of forms of sharing and delegation to allow more concurrency. For example, the
Data Dictionary is updated when identifying classes and objects. It is declared
as a resource for that step, ensuring coordinated use of the data dictionary.

Each Little-JIL step has an ezecution agent associated with it. An agent may
be human or automated. Agents are treated as special types of resources. If a

step does not declare its own agent, it uses the same agent as its parent. In the
figure, we see two types of agents: a project manager and a designer.

Resource-bounded parallelism is a Little-JIL idiom. In this example, a project
manager assigns tasks to individual designers. Each designer can work in parallel
with the manager making assignments. At any point the manager can stop mak-
ing assignments or the project could run out of designers to whom assignments
can be made, limiting the parallelism by the number of designers available.

Little-JIL steps may have preconditions and postconditions. Preconditions are
represented by downward pointing triangles to the left of the name of a step and
postconditions by an upward pointing triangle to the right of the step name.
Conditions are checked at the beginning and end of the execution of a step to
ensure that the step can be, or was, executed correctly. If a condition fails, it
throws an exception either preventing the step from executing, or preventing it
from completing successfully. Ezception handlers are identified by an “X” at the
right end of the step bar. An exception handler may specify a step to be executed
when the exception is raised and how the step should continue after handling the
exception. The Reuse_Implementation step reacts to the Designing for_Java
exception, thrown by the Not Designing for_Java precondition, by requiring
the designer to try another alternative (indicated by the arrow) to get reuse.

The “lightning bolt” in the step bar represents reactive control, that is asyn-
chronous reactions to global events. For example, when the requirements change,
a step is started that propagates the changes to the affected designers.

The syntax of Little-JIL is unique and therefore requires some learning. We
have found, however, that it provides a very concise, high-level picture of a
process while allowing details to be expanded selectively. Furthermore, the pre-
cisely defined semantics of the constructs, although not fully described here,
allow meaningful discussion and rigorous analysis of process definitions.

3 Discussion

The Little-JIL strategy focuses on coordination while deemphasizing computa-
tion. This is most appropriate for processes that rely on elements that are exter-
nal to the process program. This includes processes that are largely manual or
otherwise agent based, where the agents can benefit from coordination or where
the process can benefit from agent control. It also includes processes that require
coordinating use of independent tools, artifacts, etc. The approach is generally
applicable when coordinative and computational aspects can be separated, or to
processes that are simply non-computational.

We have found coordination processes to be common in many domains. We
have written Little-JIL programs for several software processes, including object-
oriented design, formal verification, and static analysis, as well as for the various
domains noted above. Coordination process programming naturally lends itself
to workflow processes, which frequently have human agents and use existing
external tools. We have also been exploring the applicability of Little-JIL to
processes of knowledge discovery in databases (KDD) [8]. At a low level, KDD

processes can be computationally intensive. At higher levels, though, we have
found that KDD processes involve combinations of human and automated agents,
and management of resource usage that make them suitable for coordination
process programming. We are also beginning to explore the use of Little-JIL in
coordinating teams of reconfigurable autonomous robots.

4 Status and Directions

Preliminary versions of the Little-JIL language and editor have been developed
and demonstrated; work is being completed on the first standard version (1.0).
A supporting agenda manager [9] and resource manager are being developed
(prototypes are operational), and work on integrating Little-JIL with Al-based
scheduling [10] is in progress. Work on support for visualization, analysis, mea-
surement, and evaluation is beginning. We plan to continue developing coordi-
nation processes in a variety of domains.

References

1. Sutton, Jr., S.M., Osterweil, L.J., The Design of a Next-Generation Process Lan-
guage. In: Proc. of the Joint 6th European Software Engg. Conf. and the 5th
ACM SIGSOFT Symposium on the Foundations of Software Engg. Springer-Verlag
(1997) 142-158.

2. Canals, G., Boudjlida, N., Derniame, J.-C., Godart, C., Lonchamp, J.: ALF: A
Framework for Building Process-Centred Software Engineering Environments. In:
Finkelstein, A., Kramer, J., Nuseibeh, B., (eds): Software Process Modelling and
Technology. John Wiley & Sons Inc. (1994) 153-185.

3. Montangero, C., Ambriola, V.: OIKOS: Constructing Process-Centered SDEs. In:
Finkelstein, A., Kramer, J., Nuseibeh, B., (eds): Software Process Modelling and
Technology. John Wiley & Sons Inc. (1994) 33-70.

4. Bandinelli, S., Fuggetta, A., Ghezzi, C., Lavazza, L.: SPADE: An Environment for
Software Process Analysis, Design, and Enactment. In: Finkelstein, A., Kramer,
J., Nuseibeh, B., (eds): Software Process Modelling and Technology. John Wiley
& Sons Inc. (1994) 223-248.

5. Gruhn, V., Jegelka, R.: An Evaluation of FUNSOFT Nets. In: Proc. of the Second
Eurpoean Workshop on Software Process Technology. Trondheim, Norway (1992).

6. Dami, S., Estublier, J., Amiour, M.: APEL: A Graphical yet Executable Formalism
for Process Modelling. Automated Software Engg., 5 (1998) 61-96.

7. Young, P.S., Taylor, R.N.: Human-Executed Operations in the Teamware Process
Programming System. In: Proc. of the Ninth Intl. Software Process Workshop.

1994).

8. gensezl, D., Dong, Y., Lerner, B.S., Osterweil, L.J., Sutton Jr., S.M., Wise, A.:
Represening and Reasoning about Knowledge Discovery Processes. In: Seventh
Intl. Conf. on Information and Knowledge Management. (1998). Submitted.

9. McCall, E.K., Clarke, L.A., Osterweil, L.J.: An Adaptable Generation Approach
to Agenda Management. In: Proc. of the 20th Intl. Conf. on Software Engg. (1998).

10. Garvey, A., Decker, K., Lesser, V.: A Negotiation-Based Interface between a Real-
Time Scheduler and a Decision-Maker. In: Proc. of the Workshop on Models of
Conflict Management in Cooperative Problem Solving. AAAT (1994).

