
Containment Units: A Hierarchically Composable
Architecture for Adaptive Systems

Jamieson M. Cobleigh,
Leon J. Osterweil,
and Alexander Wise

Laboratory for Advanced Software Engineering
Research

Department of Computer Science
University of Massachusetts

Amherst, MA 01003
jcobleig, ljo, wise@cs.umass.edu

Barbara Staudt Lerner
Department of Computer Science

Williams College
Williamstown, MA 01267
lerner@cs.williams.edu

ABSTRACT
Software is increasingly expected to run in a variety of environ-
ments. The environments themselves are often dynamically chang-
ing when using mobile computers or embedded systems, for exam-
ple. Network bandwidth, available power, or other physical con-
ditions may change, necessitating the use of alternative algorithms
within the software, and changing resource mixes to support the
software. We present Containment Units as a software architec-
ture useful for recognizing environmental changes and dynamically
reconfiguring software and resource allocations to adapt to those
changes. We present examples of Containment Units used within
robotics along with the results of actual executions, and the applica-
tion of static analysis to obtain assurances that those Containment
Units can be expected to demonstrate the robustness for which they
were designed.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architecture—domain-
specific architectures, languages

General Terms
Design, Reliability, Verification

Keywords
Adaptive systems, Containment Units, self-healing systems

1. INTRODUCTION
In today’s world, software is becoming increasingly pervasive.

Not only is software invisibly embedded in the cars we drive, the
elevators we take, and the machines we use, but the Internet has
made software increasingly visible in a wide variety of operational

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2002/FSE-10, November 18–22, 2002, Charleston, SC, USA.
Copyright 2002 ACM 1-58113-514-9/02/0011 ...$5.00.

contexts. Increasingly, people expect access to Web sites and pro-
grams from desktop computers, cell phones, handheld devices, etc.
For an application to be available and effective across such a range
of platforms and in a variety of challenging operational contexts
requires careful customization. Examination of various parame-
ters of the usage environment, including such factors as memory,
screen size, processor speed, ambient conditions, and communi-
cation speed is necessary in order to support the selection of the
proper software components and other resources needed to assure
satisfactory functioning. Adding to the complexity of this problem
is the fact that runtime conditions will often change. Thus, perhaps
the communication link speed or reliability changes, perhaps the
available memory changes due to behavior of concurrent tasks, or
perhaps the processor speed changes to conserve the battery. It is
clearly desirable that overall system operation continue in spite of
such changes. Often system operation can be continued with the
help of resource reallocation or software component modification
or substitution. It is clearly desirable that these adaptations take
place as quickly and automatically as possible, but only with clear
assurances that these automatic adaptations will be correct and ef-
fective.
In general, runtime adaptation is frequently needed in applica-

tions that are expected to work in a wide range of environments but
where customization is required for those different environments.
Robotics offers an excellent example. Imagine a team of robots
whose task is to rescue people from a fire. The robots may be faced
with a wide range of environmental conditions: smoke and heat
to name two. While their task remains the same, their selection
of sensors and how to interpret the data reported by the sensors
vary depending upon the environmental conditions. The environ-
ment can change as the robot moves from one room to another and
thus dynamic adaptation to this changing environment is essential
to success of the mission.
Previously [15], we have introduced an approach to enable soft-

ware systems to select customized components and satisfactory re-
source mixes that are suitable for the current environment, to mon-
itor those components and the environment for satisfactory perfor-
mance, and to adapt the software if the environment changes. We
call our realization of this approach Containment Units, which are
modules able to self-diagnose the need for changes in their opera-
tional characteristics and also able to make a limited set of changes
aimed at meeting these needs. A Containment Unit is intended to
guarantee that it will maintain its capabilities in the face of a range

Negative
Evaluation

Run System

Evaluate Adaptation

Adapt System

Formulate Change

Evaluate System

Change Designed

Problem Identified

Change Implemented

Positive Evaluation

Figure 1: Phases of Software Modification

of changes in operational conditions by automatically making in-
ternal adjustments. By composing systems out of configurations of
Containment Units, we are able to construct more adaptable sys-
tems that should need less human involvement in making relatively
modest modifications and should be adaptable to important types
of changes in their operational environment in minutes or even sec-
onds. A key aspect of our work is its emphasis on automated anal-
ysis aimed at deriving assurances that Containment Units can be
relied upon to always provide the robustness for which they are
designed.
In this paper, we present architectural details of our approach

to self-adaptation in software. We present the structure of our key
notion of a Containment Unit, discuss the separation of the coordi-
nation aspects of a Containment Unit from its operational aspects,
and then describe some of our experiences developing Containment
Units, and analyzing key properties such as correct adaptation. Fi-
nally we compare our approach to other work in this area, and then
conclude, suggesting future directions for this work.

2. OUR APPROACH
To explain the ideas underlying the Containment Unit concept,

we begin with some observations about the general notion of soft-
ware modification.

2.1 Some General Architectural Features
Software modification is a process with which there is much ex-

perience. Figure 1 is a very high level activity diagram concep-
tualizing the four main phases of a software modification process.
Modification begins by evaluating the behavior of the currently de-
ployed executing system. Not too surprisingly, evaluation often
indicates the need for change. At that point, the formulation of
a system modification takes place, followed by some alteration of
the system, reevaluation of the alteration to determine if it is ef-
fective, and the utilization of the modified system if the alteration
seems effective. If the alteration is not effective, a new change
is formulated, implemented, and evaluated until a solution to the
problem is found. The modified system then becomes the subject
of a new round of observation, evaluation, and alteration. This pro-
cess is presumably iterated continuously throughout the lifetime of
the system.

Adapter Implementation

Evaluator
Change
Agent

* Containment
Unit

Operational
Component

* *
*

*

Figure 2: Containment Unit Architecture

The purpose of modification is to improve system behavior.
Thus, increasing execution speed, adding facilities for handling
new cases or contingencies, and incorporating more effective re-
sponse to failure are all examples of possible objectives of modi-
fication. Both the details of the modification and the actual mod-
ifications performed will vary for different circumstances. Nev-
ertheless, these different modification processes share a common
architecture.
Examination of Figure 1 suggests that there are two distinct types

of activities entailed in software system modification, namely eval-
uation and alteration. We propose that each of these capabilities be
assigned as the specific responsibility of a different modification
component, as these two capabilities correspond to separate con-
cerns. We thus arrive at a very high level representation of the ar-
chitecture of a generic modification process in which the deployed,
operational system is one component, an evaluator is a second com-
ponent, and a change agent is a third component.
Generally, when we consider software modification, we think

of evaluation as being done using principally automated analysis
and testing activities while adaptation generally entails a great deal
more emphasis on human involvement. To support self-adaptation,
we suggest that the same modification architecture applies, but that
it entails the automation of the adaptation activity. We refer to an
architecture that incorporates these three components as a Contain-
ment Unit.

2.2 Containment Units
To be more precise, a Containment Unit is a module that, like

other modules, encapsulates some functionality and implements
that functionality in such a way as to meet specific nonfunctional
requirements. Specifically, we represent a Containment Unit in-
terface, CUINT, with a tuple (F, R, CP, FC). F represents the
functionality of the Containment Unit. R represents the resource
requirements including time, memory, and other shared physical
resources such as special processors, sensors, and actuators. CP
represents the communication protocol defining the input expected,
output produced, and faults reported by the Containment Unit. Fi-
nally, FC represents the faults reported by the operational compo-
nents that are handled by the Containment Unit, that is, situations
that the Containment Unit guarantees it can handle internally.
As shown in Figure 2, a Containment Unit implemen-

tation, CUIMP, is made up of four major components:
(Top, Op, Eval, Change). Top is the top level component that
is responsible for initializing the Containment Unit, and managing
the communication protocol. Op is a set of operational compo-

nents,Op = {opi}, each of which provides the functionality of the
Containment Unit. Eval is a set of evaluators, Eval = {evali},
that dynamically monitor the performance of the operational com-
ponents to ensure that the Containment Unit interface is being sat-
isfied. There may be one or more evaluators. For example, there
may be one evaluator to monitor execution speed, another to mon-
itor memory usage, and still another to evaluate the quality of the
functional results. The change agent, Change, provides a capabil-
ity for adaptation in the event that one of the evaluators determines
that the Containment Unit is not operating satisfactorily.
The purpose of an operational component is to provide the Con-

tainment Unit’s functionality within the specified resource limita-
tions, as stated inR. Each operational component within a Contain-
ment Unit has a specification that is consistent with the specifica-
tion of its encompassing Containment Unit. In particular, the func-
tionality provided by an operational component must be at least
as comprehensive as that provided by the Containment Unit itself.
Each operational component must require no more time, memory,
and other resources than the Containment Unit as a whole. By do-
ing this, we can be certain that any operational component will be
able to satisfy the Containment Unit’s functional requirements. But
each operational component will probably have environmental con-
straints that constrain it to be effective in only a subset of the op-
erational environments supported by the overall Containment Unit.
In particular, the environmental constraints of a Containment Unit
are generally a disjunction of the environmental constraints of the
enclosed operational components. This allows the change agent to
use information about current environmental conditions to select an
appropriate operational component. Operational components may
be implemented using other Containment Units to support their hi-
erarchical composition. Such Containment Units are usually con-
structed through the use of the Adapter pattern [6] to implement
the higher-level Containment Units functionality out of lower-level
Containment Units.
As mentioned above, each operational component is not required

to contain the faults that the enclosing Containment Unit contains.
Instead, the roles of the evaluators and the change agent are to en-
sure that, should a fault arise, the Containment Unit will adapt ei-
ther by running an alternative operational component or by chang-
ing resource allocations so that the fault is handled within the Con-
tainment Unit.
The relationship between the operational component specifica-

tions and the Containment Unit specification is captured below:

1. ∀op ∈ OpCU , Fop ≥ FCU (Each operational component
provides at least the functionality required by the Contain-
ment Unit). More formally, we define ≥ to mean that for all
I in the domain of FCU , FCU (I) = Fop(I).

2. ∀op ∈ OpCU , Rop ⊆ RCU (Each operational component
does not use more resources than the Containment Unit spec-
ifies.)

3. ∀op ∈ OpCU , INPUTop ≡ INPUTCU∧OUTPUTop ≡
OUTPUTCU (Each operational component has exactly the
same input and output as the Containment Unit.)

4.
∧

op FaultsReportedop − FaultsReportedCU ≡
FCCU ≡

∧
op FCop (The faults contained by a Contain-

ment Unit are the difference between the faults reported
by the collection of operational components and the faults
reported by the Containment Unit. The faults contained by
a Containment Unit are also the disjunction over the faults
contained by the collection of operational components. That

is, if one operational component reports a fault, but the
Containment Unit contains it, it must be the case that a
different operational component handles that fault.)

Evaluators are connected to operational components via the Ob-
server pattern [6]. The purpose of the evaluators is to guaran-
tee that the Containment Unit specification is satisfied by dynami-
cally monitoring the behavior of the active operational component.
Should the result quality or performance of the active operational
component fall outside the Containment Unit guarantees, the eval-
uator signals an error to the change agent.
The change agent’s job is to turn off the current operational com-

ponent and select an alternative component better suited to the cur-
rent environment or an alternative allocation of resources to the ac-
tive component and then to continue. Because the operational com-
ponents provide a great deal of information about their resource and
environmental constraints, we expect that adaptations will lead to
improved system behavior as the environment changes.
A Containment Unit configuration CUCONFIG rep-

resents a Containment Unit at runtime and consists of
(OpCUR, Eval, Change). The key point here is that at runtime,
only a single operational component of the implementation will be
active at a time. The evaluators and change agent are bound to the
Containment Unit, rather than individual operational components.
As a result, these remain active independent of which operational
component is active.
One particularly important attribute of this architecture is that

the signals sent by the evaluators and the structure adaptation pro-
cedures in the change agent are defined separately from the imple-
mentation details of the operational components. We believe this
separation of the coordination aspects of the containment unit ar-
chitecture will allow the static analysis to obtain assurances of the
robustnesses of Containment Units and the safe addition of new
operational components.

3. EXPERIENCES WITH CONTAINMENT
UNITS

We now describe our experiences in defining, executing, and an-
alyzing Containment Units. While we have exploited our agent co-
ordination language Little-JIL [22, 23] to describe the coordination
within a Containment Unit and use our Little-JIL runtime, Juliette
[2], as the basis for our execution experiments, the following dis-
cussion does not require understanding of Little-JIL.
Our example Containment Units are based on a robot search and

rescue example we have been developing. In particular, we focus
on an important element of a search-and-rescue task, namely the
ability to track a target moving through a room with a set of fixed
sensors [11, 1]. We begin by presenting the top levels of a Contain-
ment Unit hierarchy, then skip down to one of its lowest levels.

3.1 Obtain Heading Containment Unit
First we will discuss a high level Containment Unit that is de-

signed to obtain a heading towards a target under a wide range of
operational situations. This is intended to be used in a search and
rescue task, to determine where a target is in a room and to track it
as it moves, despite the fact that the room may be smoky, littered
with debris, etc.
The Obtain Heading Containment Unit, shown in Figure 3, takes

as a resource a set of sensors that it will use to track the target. It
begins by selecting an initial sensor to use and then begins reading
sensor values from the sensor and writing them into a global space
for use by other components, and monitoring the active sensor’s

Obtain
Heading

Operational
Component Reconfigurer

Resource

Sensor
Reader

Sensor
Monitor

Figure 3: Obtain Heading Containment Unit

performance. The sensor interface allows the sensor to report three
exceptional conditions:

• “No Target” if the sensor is unable to detect a target within
its observation area

• “Target Lost” if the sensor is tracking a target and then loses
it; the goes behind a wall for example, and

• “Sensor Fault” which reports internal diagnostic failures of
the sensor.

When the change agent detects one of these failure modalities,
it stops reading values from the current sensor and attempts to re-
configure the Containment Unit by selecting an alternate sensor. If
there is no target in the observation area or no applicable sensors
(“No Sensor”), the Containment Unit terminates.
The interface to the Obtain Heading Containment Unit is

(F, R, CP, FC) where:

• F is a function that returns a heading to a target
• R is one or more sensors that can be used to track a target
• CP states that this Containment Unit writes headings into a
global space, and reports “No Sensor” and “No Target” as
faults

• FC is the faults “Sensor Fault” and “Target Lost”

The implementation of this Containment Unit is a tuple
(Top, Op, Eval, Change) where:

• Top selects an initial sensor for the Containment Unit
• Op is a component that reads a sensor value and writes it into
the global space

• Eval is a monitoring component for the sensor that detects
the various failure modalities

• Change handles the faults “Sensor Fault” and “Target Lost”
by reconfiguring the resources for Op

At the conclusion of this section we describe our experiences in
using automated static analysis to verify that this Containment Unit
performs as intended.

3.2 Track Heading Containment Unit
While the Obtain Heading Containment Unit can determine the

heading of a target with respect to a given sensor, it cannot deter-
mine the exact position of a target in a room. All that can be said is
that the target lies on a given line that runs through the sensor. With
two sensors reporting headings, there are two lines that the target
lies on. The position of the target can be determined by identifying

Heading

Operational
Component

Resource
Monitor

Track

Colinearity
Repartitioner

Adaptor
Heading
Obtain

2
Obtain
Heading

Figure 4: Track Heading Containment Unit

the intersection point of the two lines. This fails, however, if the
target is on the line that runs through both sensors. We call this a
Colinearity Fault. Thus, to determine the position of a target, we
use two Obtain Heading Containment Units and their respective re-
sources. An evaluator is responsible for identifying and reporting
colinearity faults.
The Track Heading Containment Unit, shown in Figure 4 takes

as input a set of sensors. It begins by dividing the sensors into
two disjoint subsets. Each of these sensor sets will be used by an
Obtain Heading Containment Unit to determine a heading towards
a target. If no partitioning is possible (because there is only one
sensor available, for example), then the partitioning fails, signaling
“No Partition,” and the Containment Unit terminates. If a parti-
tioning is possible, then an operational component that serves as an
adapter between two instances of the Obtain Heading Containment
Unit and this Containment Unit by computing the heading based
on their outputs.
The computation of a position from two headings introduces a

new failure modality: as the target gets closer to a line drawn
through the two sensors, the accuracy of the triangulation de-
creases. The Containment Unit has a monitor that detects this con-
dition and signals a “Colinearity Fault.” It is important to note that
a colinearity cannot be detected or handled in either of the Obtain
Heading Containment Units, since each of these only has access to
a single heading. The Track Heading Containment Unit has access
to both headings and can determine when a colinearity occurs.
When the change agent is notified of a colinearity fault, or “No

Sensor” from one of the nested Containment Units, it responds by
repartitioning the resource pool so that there are appropriate re-
sources for each of the two containment units. Due to the hierarchy,
this Containment Unit does not have to handle the faults contained
by the Obtain Heading Containment Unit. If Obtain Heading Con-
tainment Unit cannot locate a target (“No Target”) the Containment
Unit terminates.
The interface to the Track Heading Containment Unit is

(F, R, CP, FC) where:

• F is the (set of) function(s) that return(s) the position of a
target

Operational
Component

Resource
Monitor

Lighting
Control

Lamp
Reconfigurer

Interface
X10

Figure 5: Lighting Control Containment Unit

• R is two or more sensors that can be used in the Obtain Head-
ing Containment Unit

• CP states that this Containment Unit writes positions into a
global space, and reports “No Partition” and “No Target” as
faults

• FC is the faults “Colinearity Fault” and “No Sensor”

The implementation of this Containment Unit is a tuple
(Top, Op, Eval, Change) where:

• Top selects an initial partitioning of the resource set
• Op is an adapter that invokes two Obtain Heading Contain-
ment Units and performs the triangulation on their output

• Eval is a monitoring component that detects colinearity be-
tween the active sensors and the target

• Change handles “Colinearity Fault” and “No Sensor” by
repartitioning the resources for Op

Later in this section we describe the analyses we attempted on
this Containment Unit.

3.3 The Lighting Control Containment Unit
As a very basic evaluation of our Containment Unit concepts

we used Little-JIL to define a Containment Unit, and then used
Juliette to execute the Containment Unit, demonstrating its ability
to dynamically reallocate resources to assure desired behavior in
the face of failure.
The Lighting Control Containment Unit, shown in Figure 5, is

a lamp controller that might be used to provide illumination for
use with vision sensors as part of a search and rescue task. Our
lamp controller Containment Unit uses the commercially available
X10 home automation system. This system includes inexpensive
switched electrical outlets, light and motion sensors, and an inter-
face that allows a computer to send and receive messages that use
the X10 protocol.
The lamp controller provides illumination when requested by ac-

tivating the switched outlet attached to a lamp, monitoring the state
of the lamp using the light sensors, and in the event that the mon-
itor determines that the lamp has failed, switching to an alternate
switched outlet. While very simple, this demonstrates the basic
structure and operational components of a Containment Unit.
The interface to the Lighting Control Containment Unit is

(F, R, CP, FC) where:

• F is the function providing illumination in a requested area
• R contains the primary and alternate switched outlets, and
light sensors for monitoring the associated lamps

• CP states that this Containment Unit reports if illumination
cannot be provided

• FC is the fault “Illumination Failure”
The implementation of this Containment Unit is a tuple

(Top, Op, Eval, Change) where:
• Top selects a primary and backup lamp, and the appropriate
sensor for monitoring the primary lamp

• Op is a component that controls a lamp using the X10 proto-
col

• Eval is a component that monitors the lamp and reports “Il-
lumination Failure”

• Change responds to“Illumination Failure” by activating the
backup lamp

Having defined this Containment Unit using Little-JIL, we were
then successful in using Juliette to support running demonstrations
showing the automatic switching over to a backup working lamp in
response to the failure of an initially selected lamp.

3.4 Analyzing Containment Units
As indicated earlier in this paper, we believe it is particularly im-

portant to be able to reason about Containment Units, specifically
to be able to demonstrate that they have been successfully defined
to assure that their desired robustness properties must always be
achieved. Thus a key feature of our work is the application of auto-
mated analyzers to verify that defined configurations and resource
reallocations do indeed assure desired robustness.
To address this key goal we employed FLAVERS (FLow

Analysis for VERification of Systems), a static analysis tool that
can verify user specified properties of sequential and concurrent
systems [5]. FLAVERS requires that a property to be checked be
represented as a Finite State Automaton (FSA). FLAVERS uses
an annotated graph model called a Trace Flow Graph (TFG), de-
rived from Control Flow Graphs, that captures an overestimate of
all possible system executions. The FLAVERS model is highly ab-
stracted so that it is as small as possible. This makes the analysis
more tractable but comes at a cost in precision. FLAVERS results
are conservative, therefore if FLAVERS determines that a prop-
erty holds, then it guarantees that the property holds on all possible
system executions. If FLAVERS determines that a property does
not hold, this can either be because there is a fault in the system
or because the property is violated on an infeasible path through
the model, a path that does not correspond to any possible execu-
tion of the system and result from the imprecision of the model.
FLAVERS uses Feasibilty constraints, also represented as FSAs,
to improve the precision of the model and eliminate some infea-
sible paths from consideration. FLAVERS uses an efficient state
propagation algorithm to verify the property that has worst-case
complexity that is O

(
N2 · |S|

)
, where N is the number of nodes

in the TFG, and |S| is the product of the number of states in the
property and all constraints.
To apply FLAVERS to determine whether or not some of our

Containment Units performed as intended, we manually trans-
formed the Little-JIL descriptions of several Containment Units
into Ada as described in [3], and then used FLAVERS to ana-
lyze these models. In future work we would hope to use auto-
mated translators to render Little-JIL defined Containment Units
into graphs amenable to FLAVERS analysis.
In one such project, we modeled the Obtain Heading Contain-

ment Unit in Ada, and created the model so that the Containment
Unit can receive up to four sensors1. This model required 549 lines
of Ada code.
1We were constructing Containment Units while we were develop-

We were interested in ensuring the Containment Unit could suc-
cessfully contain Sensor Faults, so we checked the property that
the Containment Unit would not terminate if three sensor faults oc-
curred. The TFG for this had 120 nodes and 1,592 edges. Prov-
ing this property required 11 feasibility constraints. Even with
this large number of feasibility constraints, FLAVERS was able to
prove the property in less than 1 second.
We also applied FLAVERS to the analysis of the Track Heading

Containment Unit. The model for this Containment Unit required
1,873 lines of Ada code, and the model was written so that it could
accept up to 4 sensors.
We were again interested in the robustness of this Containment

Unit. We wanted to check that if given four sensors, that it could
handle one of the sensors failing without requiring a repartition-
ing. Unfortunately, we were unable to prove this property on this
Containment Unit. The number of feasibility constraints needed to
prove this property was large enough that FLAVERS was unable to
prove this property using 2GB of memory.
While none of the analyses we performed found any faults in any

of the Containment Units, it has been shown that Little-JIL coordi-
nation specifications can contain subtle faults that can be detected
by finite state verification [3], so we believe that applying analysis
techniques to Containment Units is important to ensuring their cor-
rectness, and work continues on extending FLAVERS to allow it to
verify properties of larger software systems.

4. RELATEDWORK
Perhaps the earliest work that has addressed adaptation to faults

was the work of Randall on recovery blocks [20]. In this work the
suitability of a software function was evaluated, and when found
to be inadequate, a recovery block was called to try to mitigate the
effects of the inadequate code. This early work was quite static
in nature, requiring that the conditions to be examined, and the
recovery strategies be hard coded in advance. The representation
of operational components as resources allows us more dynamism.
Work with real time systems has some relationship to this project

as well. The work of [19], [13], [12], and [8], for example, suggest
the use of a framework within which to describe operational com-
ponents and the real time constraints on their performance. These
approaches tend to use the real time constraints primarily to de-
termine whether proposed module configurations would necessar-
ily meet real time constraints. In this work, however, unaccept-
able configurations were often simply not deployed, or ad hoc re-
sponses were generated. Our work differs in that we use language
constructs to define programmed strategies for dealing with such
constraint violations. Like some of these authors we use module
replacement as the basis of our work.
Our work is also related to earlier efforts in software reuse.

This work, like ours, emphasized the importance of repositories of
reusable modules, and the use of architectural frameworks within
which to insert them. These approaches are presented in work such
as [9, 21, 18]. Our work takes these approaches further in using ex-
plicit, rigorous process representations to effect the module reuse.
The work that this project most closely resembles, however, is

work in the areas of software architecture and domain specific soft-
ware. Numerous authors have suggested the use of architectures
to guide the composition of software system out of components or
modules (e.g., [16, 17, 7]). Our specific approach to module inter-
change is similar to that suggested by [14] and [4] who propose the
use of a defined architecture as the framework within which dif-

ing the Containment Unit architecture. As a result, our analyses are
based on older versions of the Containment Units.

ferent components can be interchanged. Containment Units extend
this through the inclusion of mechanisms to detect when adaptation
is required, and to automate this reconfiguration.
A particular system with a similar goal and approach is

Chameleon. Chameleon is an infrastructure for adaptive fault toler-
ance [10]. The Chameleon system is based on ARMORs, which are
components that control all operations in the Chameleon environ-
ment. An ARMOR can be thought of as a wrapper around a com-
ponent or set of components. Each ARMOR provides a specific
fault tolerance capability and the Chameleon architecture supports
specific failure modes and recovery mechanisms. Some example
ARMORs include the Heartbeat ARMOR, which can be used to
query a component to see if it is up or down, the Checkpoint AR-
MOR, which saves the state of the component so it can be resumed
from the checkpoint in the event of failure, and the Voter ARMOR,
which implements n-version programming. Like Chameleon, Con-
tainment Units are designed to support the hierarchical composition
of fault-tolerant components. We believe Containment Units are a
more general mechanism because a Containment Unit can have a
wider range of adaptations available to it than those provided by an
individual ARMOR

5. FUTURE DIRECTIONS
In this paper, we present Containment Units – modules that pro-

vide the basis for building a self adaptive system and show how
they can be analyzed to prove their correctness.
The current Containment Unit architecture supports the switch-

ing between different resource configurations and operational com-
ponents at run-time as long as the transition between configurations
is relatively simple. For the robotic search and rescue platform,
components do not require detailed initial state to begin execu-
tion, and executions can overlap without interference. However,
we recognize that this is not always the case. The Containment
Unit architecture should include a mechanism for the orderly and
safe transition from one configuration to another.
Also, one of the goals of the Containment Unit architecture is

to allow new configurations and components to be added to run-
ning systems in order to allow them to adapt to new operational
contexts. While we believe that the separation of operational com-
ponents from coordination structure will greatly assist us in this
goal, we have only a little experience to support this claim. The
separation of resources in the Containment Unit model allows us to
change the collection of resources that can be deployed at run-time,
and we have some experience with Little-JIL programs adapting
their behavior based on these change, but we do not yet have any
experience replacing the operational components.

6. ACKNOWLEDGMENTS
Wewish to thank the dozens of colleagues who have participated

in this project through their work in robotics, computer vision, real
time programming and multiagent systems. We are particularly
grateful to Aaron Cass for his many stimulating and insightful dis-
cussions of this work. In addition we would like to thank Krithi
Ramamritham and Harikrishna Shrikumar for their work in design-
ing and implementing the earliest Containment Units, Rod Grupen,
Gary Holness, Elizeth Araujo, and Patrick Deegan for their work
in identifying robotic functions to be encapsulated, Ed Riseman,
Alan Hanson, Deepak Karrupiah, and Zhigang Zhu for their work
in identifying and helping to encapsulate computer visions func-
tions, Victor Lesser, Regis Vincent, Tom Wagner, Anita Raja, and
Shelley Zhu for their work in establishing interfaces between our
resource management system and their multiagent schedulers, Lori

Clarke for many helpful discussions on the analysis of Contain-
ment Units, and Rodion Podorozhny, Anoop George Ninan, and
Joel Sieh for developing the resource manager.
This research was partially supported by the Air Force Research

Laboratory/IFTD and the Defense Advanced Research Projects
Agency under Contract F30602-97-2-0032, the U.S. Department
of Defense/Army and the Defense Advance Research Projects
Agency under Contract DAAH01-00-C-R231, the National Sci-
ence Foundation under Grant CCR-9708184, and IBM Faculty
Partnership Awards. The U.S. Government is authorized to repro-
duce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon.
The views and conclusions contained herein are those of the au-

thors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
the Defense Advanced Research Projects Agency, the Air Force
Research Laboratory/IFTD, the U. S. Army, the U.S. Dept. of De-
fense, the U.S. Government, the National Science Foundation, or
of IBM.

7. REFERENCES
[1] E. G. Araujo, D. R. Karuppiah, Y. Yang, R. A. Grupen, P. A.

Deegan, B. S. Lerner, E. M. Riseman, and Z. Zhu. Software
mode changes for continuous motion tracking. In
International Workshop on Self Adaptive Software, Apr.
2000.

[2] A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, and
A. Wise. Logically central, physically distributed control in a
process runtime environment. TR 99-65, University of
Massachusetts, Department of Computer Science, Nov. 1999.

[3] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. Verifying
properties of process definitions. In Proceedings of the 2000
International Symposium on Software Testing and Analysis,
pages 96–101, Aug. 2000.

[4] C. Dellarocas, M. Klein, and H. Shrobe. An architecture for
constructing self-evolving software systems. In Proceedings
of the Third International Software Architecture Workshop,
pages 29–32, Nov. 1998.

[5] M. B. Dwyer and L. A. Clarke. Data flow analysis for
verifying properties of concurrent programs. In Proceedings
of the Second ACM SIGSOFT Symposium on the Foundations
of Software Engineering, pages 62–75, Dec. 1994.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[7] D. Garlan and D. E. Perry. Introduction to the special issue
on software architecture. IEEE Transactions on Software
Engineering, 21(4):269–274, Apr. 1995.

[8] O. González, H. Shrikumar, J. A. Stankovic, and
K. Ramamritham. Adaptive fault tolerance and graceful
degradation under dynamic hard real-time scheduling. In
Proceedings of the Eighteenth Real-Time Systems
Symposium, pages 79–89, Dec. 1997.

[9] M. Griss and K. Wentzel. Hybrid domain-specific kits for a
flexible software factory. In Proceedings of the 1994 ACM
Symposium on Applied Computing, pages 47–52, Mar. 1994.

[10] Z. T. Kalbarczyk, S. Bagchi, K. Whisnant, and R. K. Iyer.
Chameleon: A software infrastructure for adaptive fault
tolerance. IEEE Transactions on Parallel and Distributed
Systems, 10(6):560–579, June 1999.

[11] D. R. Karuppiah, Z. Zhu, P. Shenoy, and E. M. Riseman. A
fault-tolerant distributed vision system architecture for object

tracking in a smart room. In International Workshop on
Computer Vision Systems, July 2001.

[12] J. H. Lala, R. E. Harper, and L. S. Alger. A design approach
for ultrareliable real-time systems. IEEE Computer,
24(5):12–22, May 1991.

[13] J.-C. Laprie, J. Arlat, C. Beounes, and K. Kanoun. Definition
and analysis of hardware- and software-fault-tolerant
architectures. IEEE Computer, 23(7):39–51, July 1990.

[14] P. Oreizy, N. Medvidovic, and R. N. Taylor.
Architecture-based runtime software evolution. In
Proceedings of the Twentieth International Conference on
Software Engineering, pages 177–186, Apr. 1998.

[15] L. J. Osterweil, A. Wise, J. M. Cobleigh, L. A. Clarke, and
B. S. Lerner. Architecting dynamic systems using
containment units. In Proceedings of the Working Conference
on Complex and Dynamic Systems Architecture, Dec. 2001.

[16] D. L. Parnas. Designing software for ease of extension and
contraction. IEEE Transactions on Software Engineering,
SE-5(2):128–38, Mar. 1979.

[17] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. Software Engineering Notes,
17(4):40–52, Oct. 1992.

[18] R. Prieto-Dı́az. Status report: Software reusability. IEEE
Software, 10(3):61–66, May 1993.

[19] K. Ramamritham, J. A. Stankovic, and P.-F. Shiah. Efficient
scheduling algorithms for real-time multiprocessor systems.
IEEE Transactions on Parallel and Distributed Systems,
1(2), Apr. 1990.

[20] B. Randell. System structure for software fault tolerance.
IEEE Transactions on Software Engineering, 1(2):220–232,
June 1975.

[21] W. Tracz. Confessions of a Used Program Salesman.
Addison-Wesley, 1995.

[22] A. Wise. Little-JIL 1.0 language report. TR 98-24, University
of Massachusetts, Department of Computer Science, 1998.

[23] A. Wise, A. G. Cass, B. S. Lerner, E. K. McCall, L. J.
Osterweil, and S. M. Sutton, Jr. Using Little-JIL to
coordinate agents in software engineering. In Proceedings of
the Fifteenth IEEE International Conference on Automated
Software Engineering, pages 155–163, Sept. 2000.

