
Verifying Process Models Built Using Parameterized State
Machines

Barbara Staudt Lerner
Williams College

lerner@cs.williams.edu

ABSTRACT
Software process and workflow languages are increasingly
used to define loosely-coupled systems of systems. These
languages focus on coordination issues such as data flow and
control flow among the subsystems and exception handling
activities. The resulting systems are often highly concur-
rent with activities distributed over many computers. Ade-
quately testing these systems is not feasible due to their size,
concurrency, and distributed implementation. Furthermore,
the concurrent nature of their activities makes it likely that
errors related to the order in which activities are interleaved
will go undetected during testing. As a result, verification
using static analysis seems necessary to increase confidence
in the correctness of these systems.

In this paper, we describe our experiences applying LTSA
to the analysis of software processes written in Little-JIL.
A key aspect to the approach taken in this analysis is that
the model that is analyzed consists of a reusable portion
that defines language semantics and a process-specific por-
tion that uses parameterization and composition of pieces
of the reusable portion to capture the semantics of a Little-
JIL process. While the reusable portion was constructed
by hand, the parameterization and composition required to
model a process is automated. Furthermore, the reusable
portion of the model encodes the state machines used in
the implementation of the Little-JIL interpreter. As a re-
sult, analysis is based not just on the intended semantics
of the Little-JIL constructs but on their actual execution
semantics. This paper describes how Little-JIL processes
are translated into models and reports on analysis results,
which have uncovered seven errors in the Little-JIL inter-
preter that were previously unknown as well as an error in
a software process that had previously been analyzed with
a different approach without finding the error.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—model checking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSTA’04, July 11–14, 2004, Boston, Massachusetts, USA.
Copyright 2004 ACM 1-58113-820-2/04/0007 ...$5.00.

General Terms
Verification, Experimentation, Languages

Keywords
Software process, workflow, finite state machine, Little-JIL,
LTSA, SMC

1. INTRODUCTION
Software is increasingly being constructed by connect-

ing together existing components into a loosely connected
framework. In the past, component reuse was accomplished
by the use of component libraries where the result of com-
position was typically a tightly connected system with the
components compiled together into a single executable pro-
gram. While this is still the most common form of reuse,
there is increasing interest in component reuse at a larger
scale, where the composite system consists of numerous in-
dependent programs running on different machines commu-
nicating over a network. Two examples of these types of
systems are multi-agent systems and business processes built
on top of Web services and other existing applications.

Business processes are typically built by using a process or
workflow language that is capable of describing and carry-
ing out coordination between a collection of applications.
The process typically defines data flow, control flow, as-
signment of responsibilities to applications or to humans,
and supports decision making and exception handling activ-
ities. As business processes become increasingly important
to a business’s success and increasingly complex, it will be-
come important to determine if these processes behave as
expected. In many cases, this involves answering the same
sort of questions that are often asked about distributed sys-
tems. Is deadlock possible? Are there race conditions? Is
starvation possible? As a result, it should be possible to
apply the same sorts of analysis tools to business processes
as to other distributed applications.

Model checking has been applied to the analysis of concur-
rent software written in high-level programming languages
[4, 20, 6, 10, 19, 16]. One of the major obstacles in verify-
ing programs is in the derivation of an appropriate model
that is small enough to analyze yet captures the semantics
of the program currently of interest. Process and workflow
languages have an advantage over traditional programming
languages from this perspective. These languages do not at-
tempt to capture the complete semantics of an application,
but rather only define the coordination between external
applications or agents. A process written in one of these

274

languages therefore can be more directly translated into a
model to be checked in its entirety, but, of course, with the
caveat that the external applications are not verified at all
using this technique. Nevertheless, model checking of pro-
cess and workflow languages has the potential for verifying
the properties stated directly in the process without the need
for a great deal of human intervention in the extraction of
a model.

Indeed, various researchers (such as [18, 9, 15, 11, 12, 8])
have applied model checking techniques to the analysis of
processes written in a variety of languages, including UML
activity diagrams [1], WSFL [13], and BPEL4WS [5]. The
technique normally applied is to translate the process lan-
guage into the input language of a model checker and then
apply the model checker to do the analysis. These process
languages contain a similar set of control constructs: se-
quential, choice, parallel, and iteration. In this previous
work, exception handling was omitted from the features of
the language that were modeled. Exception handling com-
plicates model checking due to its unpredictability and the
non-local control flow that ensues. Nevertheless, it is an im-
portant feature of process languages, and, particularly due
to the difficulty of informally reasoning about the impacts of
exception handling, it is critical to include it in the models
for verification.

In this paper, we describe how we use LTSA to model
check processes written in the Little-JIL process language.
Processes written in Little-JIL are hierarchical decomposi-
tions of steps into substeps and exception handling steps.
Model checking is accomplished by translating Little-JIL
steps (including exception handling) into FSP and then com-
posing the FSP specifications to produce a model of an en-
tire process. We take advantage of the hierarchical nature
of the processes by minimizing the generated labeled transi-
tion system at each level of the hierarchy. This has proved
effective in keeping the models to a tractable size.

Previous work on model checking process languages fo-
cused on language semantics. While sensible, this assumes
that the language semantics will be implemented correctly
in the execution support for the language. This is not an
issue for UML’s activity diagram notation, which is purely
a modeling language, but is an issue for BPEL4WS, which
is an executable language. Some of these control constructs
require careful implementation to be faithful to the language
semantics because the execution of these processes are ex-
pected to be distributed across machines and to be carried
out by external entities. In this paper, we show how the
models we produce incorporate a model of the Little-JIL in-
terpreter. As a result, we are able to prove properties not
just about the process specifications, but also about their
execution using the interpreter. In this paper, we report on
how we derive the models used in model checking from the
process and interpreter implementation. We also report on
the analysis results we have achieved thus far, including the
uncovering of errors in the interpreter implementation and
one of the processes we have analyzed.

In the remainder of this paper, we first give an overview of
Little-JIL and then an overview of LTSA. We next describe
how we build models of Little-JIL processes and then de-
scribe some results we have obtained through analysis. We
conclude with future work.

Prerequisite Badge

HandlerStep

Exception

Step Name

Reaction Step

Message

Parameter

SubStep

Interface Badge

Exception Handler Badge

Continuation Badge

Postrequisite Badge

Control Flow Badge

Reaction Badge

Figure 1: Graphical Syntax of a Step

2. LITTLE-JIL
Little-JIL is a process language with a visual syntax [22].

Little-JIL processes describe the coordination of activities
carried out by external entities. These external entities may
be people, Web services, intelligent software agents, or any
other external component that is capable of carrying out
requested tasks on input data and reporting the results,
whether successfully completed or incomplete due to ex-
ceptional situations. We refer to these external entities as
agents, independent of their actual realization.

A Little-JIL process is executed by interpreting the pro-
cess specification, selecting agents to perform the tasks, in-
forming the agents of their tasks, sending the necessary data
to those agents to carry out their tasks and accepting the re-
turn results. Different agents may participate from different
machines and may change which machine they are operating
from over time. Agents may be requested to perform tasks
concurrently. Thus, processes written in Little-JIL are typ-
ically executed as distributed, concurrent systems.

In this section, we present the aspects of Little-JIL rel-
evant to the model checking analyses we have performed
and provide more details on those aspects of the interpreter
implementation that are relevant to the model checking.

2.1 The Little-JIL Process Language
The analyses we describe in this article pertain to control

flow. As a result, we will describe the control flow semantics
of Little-JIL and omit other details of the language. (For a
complete description of the language, please see the Little-
JIL Language Report [21].)

A process is defined as a collection of hierarchically-de-
composed steps as shown in Figure 1. A step defines an
activity to be performed. It is connected to other steps
via substep edges and exception handling edges. Non-leaf
steps represent high-level activities that are decomposed into
finer-grained activities using substep edges. Leaf steps rep-
resent activities that are carried out by external agents with
no further work decomposition specified, leaving the agent
free to choose exactly how to perform the activity.

Non-leaf steps use sequencing badges to define the con-
trol flow among the substeps. There are four sequencing
badges as shown in Figure 2. Sequential steps perform their
substeps sequentially from left to right. Parallel steps as-
sign their substeps to agents concurrently. The agents might

275

Figure 2: Sequencing badges of Non-Leaf Steps

Figure 3: Exception Handling Control Flow

actually perform the work concurrently or in some unspeci-
fied sequential order. Choice steps assign substeps to agents
concurrently, but allow only a single agent to perform the
assigned work. As soon as one agent begins a choice sub-
step, all other choice substep assignments are retracted. Try
steps assign work to agents sequentially but stop as soon as
one of the substeps completes successfully. A substep may
be marked as optional, meaning that the agent may decide
to skip the step at runtime.

If a step cannot be completed successfully, it terminates
and throws an exception. The parent of the step can at-
tempt to handle the exception. Exception handling activ-
ities are attached to non-leaf steps via exception handling
edges. The edges specify which exception the step handles
and where control should flow if the exception is successfully
handled. There are four possibilities for control flow follow-
ing an exception as shown in Figure 3. A continue handler
indicates that the step should be continued from the point
at which the exception was handled. A restart handler indi-
cates that the step containing the exception handler should
be restarted from the beginning. A complete handler indi-
cates that the step containing the exception handler should
be considered to have completed successfully. A rethrow
handler indicates that the exception should be rethrown to
the parent of the step containing the exception handler. It
is possible for an exception handler to have a null step; that
is, it identifies the exception being handled and the control
flow semantics to use but does not involve any activity to
compensate for the exception.

Steps may also have prerequisites and postrequisites. Req-
uisites are themselves steps. A prerequisite uses the state of
the process to ensure that it is appropriate to execute the
step. It is executed prior to a step’s substeps. The sub-
steps are executed only if the prerequisite completes suc-
cessfully. A postrequisite is intended to check the results of
the substeps and only allow the step to complete and make
its results visible if this check is passed. A postrequisite is
executed after a step’s substeps are completed. Both pre-
requisites and postrequisites may be omitted from a step
definition.

Every step is assigned to an agent. The agent is the ex-
ternal entity responsible for the step. It is the agent that
decides when to start a step and when to skip an optional
step. Deciding when to start a step is particularly important
for choice substeps as it results in the retraction of the other
choice substeps. For leaf steps, the agent is responsible for
performing the work associated with the step, returning data
results on successful completion of the work, and throwing
an exception on unsuccessful completion.

Figure 4 shows the process used in the experiment de-
scribed in this paper. This process coordinates the actions
of an auctioneer and a collection of bidders interacting in an
open-cry auction. The auctioneer is responsible for accept-
ing bids and deciding when to close the auction. The bidders
are responsible for submitting bids. The Close Auction
step runs in parallel with the Accept Bids From Bidder
step, meaning that the auctioneer can decide to close the
auction at any time. Accept Bids From Bidders is a re-
cursively parallel step. This allows it to accept bids from
different bidders in parallel. The Accept One Bid step is a
sequentially recursive step. It first checks that the auction is
still open via a prerequisite. If it is open, it allows a bidder
to submit a bid. If it is the best bid seen so far, the auc-
tioneer updates its record of the best bid. Whether or not
the new bid is best, the bidder is then allowed to bid again
via the recursive Accept One Bid step if the auction is still
open.

2.2 The Little-JIL Interpreter
The Little-JIL interpreter uses a collection of interact-

ing finite state machines that track the status of the steps.
These finite state machines also form the core of the models
used in model checking processes. The most important state
machines for a step are a StepInterpreter and a Sequencer.
The StepInterpreter captures the semantics of step execu-
tion that are independent of the sequencing badge while the
Sequencer captures the semantics that vary depending on
the sequencing badge. There are 5 types of Sequencer ma-
chines, one for each sequencing badge plus one for leaves. In
total, there are 13 types of state machines within the inter-
preter. In addition to the major ones listed above, there are
machines that interact with the resource manager, evaluate
prerequisites and postrequisites, instantiate a step, handle
exceptions, and clean up a step when it completes.1

The interpreter state machines are defined using SMC2

(State Machine Compiler) which generates executable Java
code from the state machine descriptions. For example, Fig-
ure 5 shows the state machine for the sequential sequencer.
Figure 6 shows the definition of the INSTANTIATING SUBSTEP
state of the SequentialSequencer state machine. On entry
to this state, if there are more substeps, the next substep is
instantiated. This method call creates a new thread running
the StepInterpreter machine (not shown) for the substep.
If there are no more substeps, the SequentialSequencer
machine completes, ending execution of the nested state ma-
chine, and sending the sequencerCompleted event to the
StepInterpreter machine it is nested inside of. After call-
ing instantiateNextSubstep, the sequencer expects to hear
either the event substepInstantiationSucceeded or sub-
stepInstantiationFailed. In the succeeded case, it exe-

1There is an additional machine to handle reactions, but
that is not included in the experiment reported here.
2http://smc.sourceforge.net/

276

Figure 4: Auction Process

Figure 5: The State Machine of a Sequential Sequencer

INSTANTIATING _SUBSTEP
Entry{start();}
{

start[moreSubsteps();]
nil {instantiateNextSubstep();}

start[!moreSubsteps();]
pop(sequencerCompleted) {}

substepInstantiationSucceeded(substep: InterpreterAgendaItem)
EXECUTING_SUBSTEP {postSubstep(substep);}

substepInstantiationFailed(substep: InterpreterAgendaItem, exceptions: Collection)
HANDLING_EXCEPTIONS {addExceptionsToHandle(exceptions);}

}

Figure 6: The INSTANTIATING SUBSTEP State of the Sequential Sequencer in SMC Syntax

277

CLOCK = (tick -> tock -> CLOCK).

CHIME(MaxValue=10) = COUNT_SECONDS[0],

COUNT_SECONDS[seconds:0..MaxValue-1] =
(when seconds < MaxValue-2

tock -> COUNT_SECONDS[seconds+2]
| when seconds >= MaxValue-2

tock -> chime -> COUNT_SECONDS[0]).

Figure 7: Example FSP Process

cutes the action to post the substep, causing the substep’s
StepInterpreter to receive the posting event, and then
transitions to the EXECUTING SUBSTEP state. If the substep
instantiation fails, the sequencer remembers what exception
needs to be handled and then transitions to the HANDLING -
EXCEPTIONS state.

The exact behavior of a state machine may depend on
static information about a step as well as dynamic decisions
made by an agent. For example, the condition moreSub-
steps() used in Figure 6 depends on the static information
of how many substeps the current step has as well as which
was the last substep to complete. Information that is only
known dynamically includes information about whether an
agent completed the work of a leaf step successfully or not.

3. LTSA
LTSA is a model checker developed by Jeff Kramer and

Jeff Magee at Imperial College [14]. The input to LTSA is
a set of interacting finite state machines written in the pro-
cess algebra FSP (Finite State Processes).3 Each FSP state
machine definition is translated into a Labeled Transition
System for analysis by LTSA. A state machine is defined in
terms of states consisting of a list of transition choices. Each
transition may have a condition associated with it, followed
by a list of sequential events, and ending with the name of
another state. When two or more state machines use the
same event, the event is assumed to happen synchronously
in all state machines.

Figure 7 shows two interacting FSP state machines. The
first state machine simulates a clock that issues alternating
ticks and tocks. A second state machine called CHIME issues
a chime periodically where the length of the period is de-
termined by the value passed in as a parameter to CHIME.
Using parameterization, the same process can be used in
different contexts and result in the generation of different
labeled transition systems. In this case, the CHIME labeled
transition system requires enough states to count by 2 up to
its maximum value.

State machines as shown in Figure 7 are primitive. Prim-
itive state machines may be composed to produce compos-
ite state machines. When composing state machines, it is
possible to hide some of the events used by the primitive
state machines and only make visible those required for later
synchronization with other state machines. This allows the

3Unfortunately, both Little-JIL and FSP use the word pro-
cess but mean very different things. To avoid confusion, we
use state machine terminology when referring to the FSP de-
scriptions rather than the process algebra terminology sug-
gested by Kramer and Magee.

||MINUTE_ALARM = (CLOCK || CHIME(60))
@{chime}.

CHECK_MAIL =
(chime -> check_mail -> CHECK_MAIL).

||CHECK_MAIL_EVERY_MINUTE =
(MINUTE_ALARM || CHECK_MAIL).

Figure 8: A composite process in FSP

composite state machine to be minimized, thereby reduc-
ing the size of the labeled transition systems that must be
analyzed. This helps address problems of state space explo-
sion common in model checking and is a good approach for
modeling systems with a hierarchical organization [2, 23].

Figure 8 shows an example composite state machine. The
MINUTE ALARM state machine is defined by composing CLOCK
and CHIME, passing 60 as the value to count to, and ex-
posing only the chime event. CHECK MAIL models a mail
client that checks the mail server for incoming mail when-
ever the chime goes off. The tick and tock events are not
exposed by the MINUTE ALARM composite state machine. This
allows the composite state machine CHECK MAIL EVERY MIN-
UTE to be minimized to a finite state machine consisting of
just two states. If MINUTE ALARM exposed the tick and tock
events, the composite state machine CHECK MAIL EVERY MIN-
UTE would contain 124 states. By hiding the tick and tock
events, the composite state machine can be minimized to a
2-state machine equivalent to the CHECK MAIL state machine
itself.

After composing a model, LTSA can determine whether
there is deadlock in the model by looking for states in the
composite state machine with no outgoing edges. In addi-
tion, an analyst can define properties for LTSA to check. A
property is defined as another finite state machine specified
in FSP, but specially marked as being a property. After com-
posing a property with other finite state machines, LTSA
can determine whether the property holds for the composite
state machine. If LTSA finds deadlock or determines that a
property does not hold, it produces a trace of events through
the finite state machine that demonstrate the failure.

4. BUILDING MODELS OF LITTLE-JIL
PROCESSES FOR MODEL CHECKING

We have two goals in building models of Little-JIL pro-
cesses. The first goal is precision: the model must represent
the process with enough precision that analysis can pro-
duce interesting results. The second goal is automation:
the amount of manual effort required to build a model for
a Little-JIL process and analyze it must be minimal. We
have accomplished these goals by dividing the Little-JIL
model of a process into two parts: a reusable part that pre-
cisely captures the language semantics and a process-specific
part that is automatically generated. The reusable portion
was created manually by translating the state machines im-
plemented in the interpreter into FSP. We parameterized
the FSP descriptions in the reusable portion so that they
can be specialized to the properties of individual steps in a
Little-JIL process. Then, we built a tool that generates the
process-specific part by composing and parameterizing state

278

INSTANTIATING_SUBSTEP[curSubstep:1..NumSubsteps+1] =
(when curSubstep < NumSubsteps+1

substep[curSubstep].requestInstantiate -> INSTANTIATING_SUBSTEP[curSubstep]

| when curSubstep < NumSubsteps+1
substep[curSubstep].instantiationSucceeded -> substep[curSubstep].requestPost ->

EXECUTING_SUBSTEP[curSubstep]

| when curSubstep < NumSubsteps+1
substep[curSubstep].instantiationFailed -> HANDLING_EXCEPTIONS[curSubstep]

| when curSubstep == NumSubsteps+1 parent.sequencerCompleted -> FINAL
)

Figure 9: The INSTANTIATING SUBSTEP Local Process of the Sequential Sequencer in FSP

machines from the reusable portion to construct a model for
each step. The models of non-leaf steps additionally com-
pose models of their substeps, using event renaming to cre-
ate the necessary synchronizations between steps and their
substeps. In this section, we explain how this model is con-
structed.

4.1 Modeling the Interpreter
The major effort in modeling a Little-JIL process is in

modeling the interpreter. Due to the state machine based
implementation of the interpreter, it is relatively straight-
forward to translate the interpreter’s state machines into an
FSP. Each FSP state machine is parameterized so that it
can perform conditional tests equivalent to those performed
by the interpreter’s state machines. Actions that result in
the sending of events between state machines, such as post-
ing a substep, are modeled by adding actions to the FSP
descriptions to represent the sending and receiving of those
events.

For example, consider the FSP equivalent of the INSTAN-
TIATING SUBSTEP state shown in Figure 9. The INSTAN-
TIATING SUBSTEP FSP state is parameterized by the index
of the substep currently being executed. The SEQUENTI-
AL SEQUENCER state machine (not shown) of which this is
a state has NumSubsteps as a parameter. The model for
each sequential step includes a SEQUENTIAL SEQUENCER state
machine in its composition, passing in the number of sub-
steps it has as a parameter. Note that by using the indexing
feature of FSP, it is possible to describe this state machine
independently of the number of substeps a step has. When
a specific step is modeled, a parameter will indicate how
many substeps the step has, allowing the appropriate la-
beled transition system to be generated from this descrip-
tion. The requestInstantiate action models the activities
of the instantiateNextSubstep method. The requestPost
action models the activities of the postSubstep method.

Each time that a state machine starts in the interpreter,
it is run in a new thread. To model this, each step in-
stantiates its own FSP state machine by supplying the ap-
propriate parameter values. In addition to these state ma-
chine threads, four actions taken by the state machines re-
sult in the creation of new threads. Two appear in the
example above: step instantiation and step posting. The
FSP model includes models of these threads as well. Figure
10 shows the model for the thread that instantiates a step.
The requestInstantiate event synchronizes with the FSP

STEP_INSTANTIATOR =
(requestInstantiate -> instantiate ->

STEP_INSTANTIATOR

| final -> STEP_INSTANTIATOR)

Figure 10: Model of the Thread that Instantiates a
Step

state machine doing the instantiation, in this case the se-
quencer for the parent of the step being instantiated. The
instantiate event synchronizes with the StepInterpreter
process for the step being instantiated. FSP state machines
for the other three machines are quite similar but involve
different events.

The FSP model of the interpreter contains 18 processes
corresponding to the 13 interpreter state machines4 plus the
4 helper threads mentioned above. In addition, the FSP
model contains a process describing agent behavior, specif-
ically placing the agent in charge of deciding when to start
a step, when to opt out, when to complete successfully, and
when to throw an exception. In total, there are 107 states
in the FSP description, compared to 68 in the interpreter
implementation. There are more states in the FSP defini-
tion than states in the SMC definition for several reasons.
The FSP definition contains 6 additional state machines (the
agent, the sequencer for parallel steps with 0 substeps, and
4 helper threads). The FSP definitions have an additional
FINAL state. In some cases it was necessary to add states to
model activities that were done in Java actions. These pri-
marily revolved around throwing and handling exceptions.
Finally, in the case of the choice sequencer, it was necessary
to replicate an entire state for each child of the substep, not
just replicate transitions as shown earlier.

In summary, the FSP model was built directly from the
implementation. While including somewhat more function-
ality than just the SMC definitions, the connection between
the two representations is very clear and represents a faith-
ful model of the interpreter implementation. The very direct
relationship between the model and the interpreter imple-
mentation increases our confidence that the model is accu-
rate and leads to analysis results that are able to find errors

4The parallel sequencer requires a separate state machine
for the special case in which a parallel step has 0 substeps.

279

in the interpreter implementation and provide more detailed
analysis of processes.

4.2 Modeling a Little-JIL Process Using FSP
To model a Little-JIL process, we create a model of each

step using the step name to distinguish one step model
from another. We provide parameter values that capture
the static information that the model depends on about the
step, such as the number of substeps a step has, or whether
the step is optional. We then compose the step models,
renaming parent and substep action prefixes to the appro-
priate step names to create a model of the entire Little-JIL
process.

Each step model is itself a composition of primitive FSP
state machines. In particular, each step is modeled with a
StepInterpreter, a Sequencer, an Elaborator, a Finaliz-
er, an Agent, a StepInstantiator, and a StepPoster. De-
pending on the characteristics of the step, additional prim-
itive state machines, such as a PrerequisiteEvaluator or
ExceptionHandler may also be included. Figure 11 shows
the model generated automatically for the OpenCryAuction
step of Figure 4. The parameters provide information to the
primitive state machines about the details of the step. For
example, the parameters to the STEP INTERPRETER indicate
that the step acquires resources, has no prerequisite, is a
parallel step, is the root of the process and has no postreq-
uisite.

Figure 11 also shows how a step model is decomposed
into a STEP INTERPRETER machine and a SEQUENCER machine.
The SEQUENCER machine is responsible for coordinating with
the child steps. The parameter to the PARALLEL SEQUENCER
machine composed into the OpenCryAuction Sequencer ma-
chine indicates that the step has two children. Action prefix
renamings are used to rename the generic parent and in-
dexed child action prefixes used in the reusable model to
the steps that serve as the actual parent and children for
this sequencer. In this case, openCryAuction is identified as
the parent of close Auction and accept Bids From Bidder,
the prefixes used to identify the corresponding steps in the
FSP model.

Other steps are composed in a similar way. Recursive
steps require special attention. Since the model must be
finite, it is necessary to remove recursion from the model.
Currently, we require the analyst to modify the Little-JIL
process to unroll recursion the desired number of times be-
fore terminating it. This version with the recursion elimi-
nated can then be translated using our tool.5

Using the approach described above, we have used our
tool to translate the auction process shown in Figure 4 into
an FSP model. We first removed recursion by eliminating
all recursive calls by hand, although it would be possible
to model recursion by manually unrolling the recursion the
desired number of times prior to translating to FSP. Table
1 shows the sizes of the models created by LTSA before
and after minimization for each step in the auction process
shown in Figure 4. Composition time indicates how long it
took to compose the model for the step, while minimization
time is the time to minimize the model after it is composed.
Times are measured in seconds and were taken on a Dell

5We are working on a tool that allows the analyst to specify
the number of recursion unrollings to include, along with
other customizations prior to analysis. This is discussed
further in Section 6.

Dimension 4100 running Red Hat Linux 7.1 with 512 MB
of memory, running Java 1.4.2. The times are based on a
model of the interpreter that corrects the errors reported in
Section 5, resulting in no deadlocks or violated properties.
The time to check the model of the OpenCryAuction once
the model is created is 3 ms.

5. PROVINGPROPERTIESOFLITTLE-JIL
PROCESSES

After building the FSP model of the Little-JIL auction
process, we then used LTSA to check for deadlock and to
check properties about the interpreter implementation. Our
analysis with LTSA has revealed seven previously unknown
errors in the interpreter implementation. Two of these could
have been uncovered given the right test input, while the
remaining five would only be apparent if a particular inter-
leaving of events from concurrent threads occurs. We find
this result to be particularly exciting given that these er-
rors never surfaced in the testing or routine use that the
interpreter has undergone in the past several years.

We next modified the generated model to add process-
specific properties to duplicate an experiment using FLA-
VERS [7] to analyze the auction process [3]. We duplicated
three properties from the previous experiment. The other
two properties from the previous experiment included a de-
tailed model of agent behavior, which cannot be generated
from the process description alone and thus is not included
in this experiment. We agreed on the results of two proper-
ties but disagreed on the third. On further manual exami-
nation the results of the current analysis are correct. Thus,
we have uncovered an error in the auction process that was
not discovered by the earlier analysis with FLAVERS.

5.1 Interpreter Deadlocks Found
Most of the errors that were found were uncovered during

deadlock detection. One design problem is responsible for
three of these errors so we will discuss those in more de-
tail. All substeps of a parallel step may be executed concur-
rently. The interpreter posts them concurrently, but agents
are responsible for deciding exactly when they execute. If
a substep of a parallel step throws an exception, any other
substeps that have not been started yet by an agent are re-
tracted (preventing the step from starting) while the excep-
tion is being handled to avoid doing work that is potentially
unnecessary. Retracting a step is done using a helper thread
similar to step instantiation and posting:

STEP_RETRACTER =
(requestRetract -> retracting -> STEP_RETRACTER
| final -> STEP_RETRACTER).

The Sequencer of the parent synchronizes with this thread
using a requestRetract event. The StepInterpreter of
the child synchronizes with the retracting event. Because
retraction is done in a separate thread there can be an ar-
bitrarily long time between when the parent sequencer re-
quests the retraction and the substep actually retracts. This
sets up the possibility of races, some of which result in dead-
lock:

• If the parent’s finalizer starts (meaning the step is
cleaning up) before the substep retracts, the substep
never gets canceled as it should be.

280

minimal
||OpenCryAuction =

(
openCryAuction:STEP_INTERPRETER(

True, // Acquires resources
False, // Does not have prerequisite
0, // Number pre/postreq exceptions
Parallel,
True, // Is root
False) // Does not have postrequisite

|| {openCryAuction}::STEP_POSTER/{final/openCryAuction.final}
|| {openCryAuction}::RESOURCE_ACQUIRER(1, // Number of non-agent resources

False) // Do not force a resource acquisition to fail
|| {openCryAuction}::RESOURCE_RELEASER(2) // Number of resources
|| {openCryAuction}::ELABORATOR(1, // Number of non-agent resources

True) // Acquires an agent
|| {openCryAuction}::FINALIZER (2, // Number of resources to release (approximate)

2) // Number of substeps
/{

close_Auction/openCryAuction.child[1],
accept_Bids_From_Bidder/openCryAuction.child[2]

}
|| {openCryAuction}::AGENT (Parallel,

False, // Not optional
False, // Does not throw exceptions
False, // Does not have deadline
False) // Does not depend on global

|| OpenCryAuction_Sequencer
)

}.

minimal
||OpenCryAuction_Sequencer =

(
PARALLEL_SEQUENCER (2) // Number of children

/{
openCryAuction/parent,
close_Auction/child[1],
accept_Bids_From_Bidder/child[2]

}
|| {close_Auction}::STEP_RETRACTER/{final/close_Auction.final}
|| {accept_Bids_From_Bidder}::STEP_RETRACTER/{final/accept_Bids_From_Bidder.final}
|| {close_Auction}::STEP_CANCELLER/{final/close_Auction.final}
|| {accept_Bids_From_Bidder}::STEP_CANCELLER/{final/accept_Bids_From_Bidder.final}
|| Close_Auction/{openCryAuction/close_Auction.parent}
|| Accept_Bids_From_Bidder/{openCryAuction/accept_Bids_From_Bidder.parent}
|| OpenCryAuction_ExceptionHandler

)
}.

Figure 11: The FSP Model of the CloseAuction Step

Before minimization After minimization Composition Minimization
Step States Transitions States Transitions time (sec) time (sec)
OpenCryAuction 195 293 22 28 0.3 0.07
CloseAuction 92 175 13 25 0.3 0.02
AcceptBidsFromBidder 154 287 16 29 0.3 0.04
AcceptOneBid 174 349 27 45 0.3 0.06
SubmitBid 126 221 17 31 0.3 0.05
Update Best Bid 114 215 16 29 0.3 0.03
Total 1.8 0.27

Table 1: Sizes of the Models of the Steps in the OpenCryAuction process and Time to Create Them

281

• The exception handler of parallel steps assumes that
steps retract before the exception handler runs, but
there is no synchronization in the interpreter to assure
this. This leads to two problems:

– A substep may start while the parent’s exception
handler is running, which is in violation of lan-
guage semantics.

– If an agent opts out of a substep after the parent’s
exception handler starts, the exception handler
deadlocks.

5.2 Violations of Interpreter Properties
We defined nine properties that we wanted to prove about

the interpreter. These properties include such things as as-
suring that the prerequisite is checked prior to executing
substeps. Of these nine properties, two uncovered errors in
the interpreter. One property is again related to substep
retraction so we discuss it here. This property states that a
sequential or parallel step can complete successfully only if
one of the following holds:

• All children complete successfully, or

• All exceptions thrown by substeps are handled with
complete or continue control flow semantics.

This property was included in the composition for all par-
allel and sequential steps. In attempting to prove it, we dis-
covered another race condition involving retraction of sub-
steps of parallel steps. Specifically, if the parent’s exception
handler runs and decides to continue the step, it will think
there is no more work to do and complete the step if the
substeps that should be retracted are not yet retracted.

5.3 Process Errors Found
To prove process-specific properties, those properties must

currently be defined manually. In addition, minor modifica-
tions to the generated model must be performed manually
to expose the actions used in the property from the state
machines where they are defined to the state machine where
the property can be proven. In this section, we describe the
four changes that were made to prove that it was possible
for bids to be submitted after the auction is closed.

The first change required was to relate the CloseAuction
step with the AuctionNotClosed prerequisite of the Update-
BestBid step. The action performed by the agent of the
CloseAuction is to set a variable to indicate that the auction
is closed. The action performed by the agent of the Auction-
NotClosed step is to check the value of this variable. The
Agent state machine included in the reusable portion of the
model has a parameter to control whether global state affects
the agent’s behavior, and, if so, takes the value of that global
into consideration when deciding whether to complete suc-
cessfully or fail. To model the auctionClosed variable, the
following was done to the model of the AuctionNotClosed
step:

• The parameter indicating that this step’s agent uses a
global is changed to true (see Figure 12).

• The globalSet action of this step’s agent is renamed to
auctionClosed so that it can synchronize with other
state machines that set this variable (also shown in
Figure 12).

{auctionNotClosed}::AGENT (Leaf,
False, // Not optional
True, // Can throw exceptions
False, // Does not have deadline
False, // Do not force failure
True) // Does depend on global -

// manually changed
/{

// Manually added renaming
auctionClosed/auctionNotClosed.globalSet

}

Figure 12: The Modified Agent to model the Auc-
tionClosed global

• The auctionClosed action is added to the list of ac-
tions to make visible from the AuctionNotClosed com-
posite state machine.

In addition, the following was done to the model of the
CloseAuction step:

• The setGlobal action of this step’s agent is renamed
to auctionClosed so that it can synchronize with other
state machines that look for this variable being set.

• The auctionClosed action is added to the list of ac-
tions to make visible from the CloseAuction composite
state machine.

Second, the property to be proven must be defined man-
ually. While this requires understanding the events used by
the model, many properties can be expressed concisely. The
property under consideration here, NoLateBidsAccepted is
defined as:

property NO_LATE_BIDS_ACCEPTED =
(update_Best_Bid.completed ->

NO_LATE_BIDS_ACCEPTED
| auctionClosed -> CLOSED),

CLOSED =
(auctionClosed -> CLOSED).

Third, the property must be composed with the least com-
mon ancestor of all involved substeps. In this case, this
requires composing the property with the model for the
OpenCryAuction Sequencer.

Finally, all events that are required by the property must
be visible from the originating state machine to the state
machine in which the property is being checked. In some
cases, they may already be visible. In other cases, they
must be added to the list of events that are made visible.

Note that these changes all affect parameterization of state
machines, renaming of events, and exposing events previ-
ously hidden. All of the changes are made in the composi-
tions used to model the actual process steps. The reusable
portion of the model that captures the language semantics is
not modified at all. This further supports the appropriate-
ness of the approach of using a reusable language semantics
model that is customized to capture the semantics of a par-
ticular process.

In the experiment referenced earlier and in the analysis
experiment described here, the result was that the NO LATE -
BIDS ACCEPTED property does not hold. The CloseAuction

282

step can close the auction after the AuctionNotClosed pre-
requisite is executed and before the UpdateBestBid step is
executed, leading to the property failure.

Based on this result, in the previous experiment, the au-
thors modified the process so that the UpdateBestBid step
would check the AuctionNotClosed prerequisite again, in
addition to the BidIsBetter prerequisite it currently had.
The authors reported that the NO LATE BIDS ACCEPTED prop-
erty could be proven for this modified process. With the
more detailed model of language semantics provided in this
experiment, however, we can prove that this property still
does not hold. In particular, it fails if the CloseAuction step
executes after UpdateBestBids’s prerequisite but before Up-
dateBestBid completes. For the property to be proven, it
is necessary for the AuctionNotClosed prerequisite and the
UpdateBestBid step to operate atomically with respect to
the CloseAuction step. Thus, the more detailed model pro-
vided here leads to improved analysis capabilities.

Modeling a global property like AuctionClosed and ex-
porting more events from the composite machines is likely
to make the model grow. On the other hand, the synchro-
nization that results by modeling the AuctionClosed vari-
able may reduce the size of the model as it makes certain
interleavings impossible. The overall impact of modeling
the AuctionClosed global variable, exposing the necessary
events, composing in the property, and modifying the pro-
cess to include the extra prerequisite on UpdateBestBid is
shown in Table 2. Comparing this with the previous results,
we see that the pre-minimization sizes of the steps from
UpdateBestBid up the step hierarchy to OpenCryAuction
are roughly doubled to account for the extra events that
are now being included in those models. Similarly, the
post-minimization sizes of the models for the steps from
UpdateBestBid through AcceptBidsFromBidders are also
doubled. The interesting point, though, is that once we
reach the step where the property is proven, it is no longer
necessary to export these extra events. As a result, the min-
imized sizes of the root step are identical in the two cases.
If the property could be proven lower in the step hierarchy,
it would have impacted fewer step models.

6. FUTUREWORK
The goal of this work is to be able to prove process-specific

properties. Currently, doing so requires some hand manip-
ulation of the process to limit recursion and some hand ma-
nipulation of the generated model to define properties, mod-
ify parameters, rename events, and expose events. We are
currently working on a tool to assist an analyst in these tasks
by helping the analyst find the recursive steps and modify
the process to bound recursion as the analyst sees fit, in-
cluding modeling the condition that causes the recursion to
stop. A further step would be to help the analyst in defin-
ing properties at the level of the Little-JIL process so that
those properties and associated changes to the model could
be made automatically.

7. CONCLUSIONS
Model checking operates on a model that abstracts away

some details of the code. One of the challenges in model
checking is to create a model that is sufficiently abstract to
remain computationally feasible while sufficiently detailed
to capture the semantics of the application that are being

verified. Little-JIL provides such an abstraction for appli-
cations that involve the coordination of multiple agents by
focusing on the coordination issues and abstracting away
the details of agent behavior. Furthermore the style of im-
plementation of the Little-JIL interpreter has given us the
ability to model Little-JIL processes in terms of their exe-
cution behavior, not just in terms of the intended semantics
of the Little-JIL constructs.

Our results in uncovering errors in the implementation
of the interpreter suggest that this style of implementation,
with state machines explicitly embedded in the source code,
facilitates the development of an accurate model. Adopting
this implementation style in other applications is likely to
also facilitate model checking in those applications. In ad-
dition, the hierarchical nature of Little-JIL steps made the
models more tractable in size as the model could be mini-
mized at each level of the hierarchy, suggesting that work-
flow and process languages with hierarchical representations
may be more amenable to analysis than the more common
representations based on data flow.

Acknowledgements
Little-JIL was designed and developed by members of the
Laboratory for Advanced Software Engineering Research at
the University of Massachusetts, Amherst under the guid-
ance of Lee Osterweil. The state machine design of the
interpreter was done chiefly by Sandy Wise, Eric McCall,
and Aaron Cass. Aaron was responsible for the state ma-
chine based implementation of the Little-JIL interpreter us-
ing SMC. The auction process was developed by Aaron,
Sandy and Hyungwon Lee and previously appeared in an
ISSTA paper. Jamieson Cobleigh has given me helpful tips
on how to use LTSA effectively. Finally, I would like to
thank Rick Lerner, Jamie and Aaron for their comments on
an earlier draft.

This material is based upon work supported by the Na-
tional Science Foundation under Grant Numbers CCR-9988254,
CCR-0204321 and CCR-0205575. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the author and do not necessarily reflect
the views of the National Science Foundation.

8. REFERENCES
[1] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified

Modeling Language User Guide. Addison-Wesley, 1999.
[2] S. C. Cheung and J. Kramer. Checking safety

properties using compositional reachability analysis.
ACM Trans. on Soft. Eng. and Methodology,
8(1):49–78, Jan. 1999.

[3] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil.
Verifying properties of process definitions. In Proc. of
the Intl. Symp. on Software Testing and Analysis
(ISSTA), pages 96–101, Portland, Oregon, August
2000.

[4] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach,
C. S. Pasareanu, Robby, and H. Zheng. Bandera:
Extracting finite-state models from Java source code.
In Proc. of the 22nd Intl. Conf. on Soft. Eng., pages
439–448, Limerick, Ireland, June 2000.

[5] F. Curbera, Y. Goland, J. Klein, F. Leymann,
D. Roller, S. Thatte, and S. Weerawarana. Business
process execution language for web services, version

283

Before minimization After minimization Composition Minimization
Step States Transitions States Transitions time (sec) time (sec)
OpenCryAuction 105 145 22 28 0.3 0.05
CloseAuction 92 175 14 26 0.3 0.02
AcceptBidsFromBidder 286 830 38 97 0.3 0.1
AcceptOneBid 384 1130 59 147 0.3 0.1
SubmitBid 126 221 17 31 0.3 0.03
Update Best Bid 254 744 41 109 0.3 0.1
Total 1.8 0.4

Table 2: Sizes of the Models of the Steps in the Modified OpenCryAuction Process Including a Process-
Specific Property and Time to Create Them

1.0. Technical report, BPMI.org, July 2002. available
at http://www.bpmi.org/bpml-spec.esp.

[6] C. Demartini, R. Iosif, and R. Sisto. A deadlock
detection tool for concurrent java programs. Software
- Practice and Experience, July 1999.

[7] M. B. Dwyer and L. A. Clarke. Data flow analysis for
verifying properties of concurrent programs. In Proc.
of the ACM SIGSOFT ’94 Symp. on the Foundations
of Soft. Eng., pages 62–75, December 1994.

[8] R. Eshuis and R. Wieringa. Verification support for
workflow design with UML activity graphs. In Proc. of
the 24th Intl. Conf. on Soft. Eng, pages 166–176,
Orlando, Florida, May 2002.

[9] H. Foster, S. Uchitel, J. Magee, and J. Kramer.
Model-based verification of web service compositions.
In Proc. of the 18th IEEE Intl. Conf. on Automated
Soft. Eng. (ASE), Montreal, 2003.

[10] G. Holzmann. A practical method for verifying
event-driven software. In Proc. of the 21st Intl. Conf.
on Soft. Eng. (ICSE’99), pages 597–607, May 1999.

[11] C. Karamanolis, D. Giannakopoulou, J. Magee, and
S. Wheater. Model checking of workflow schemas. In
Proc. of the 4th Intl. Enterprise Dist. Object
Computing Conf. (EDOC’00), Makuhari, Japan, Sept
2000.

[12] M. Koshkina and F. van Breugel. Verification of
business processes for Web services. Technical Report
CS-2003-11, York University Department of Computer
Science, Oct. 2003.

[13] F. Leymann. Web services flow language (wsfl 1.0).
Technical report, IBM, 2001. available at http://www-
3.ibm.com/software/solutions/webservices/pdf/WSFL.pdf.

[14] J. Magee and J. Kramer. Concurrency: State Models
and Java Programs. John Wiley & Sons, 1999.

[15] S. Nakajima. Model-checking verification for reliable
web service. In Proc. of the OOPSLA 2002 Workshop
on Object-Oriented Web Services, Seattle, Nov. 2002.

[16] G. Naumovich, G. S. Avrunin, and L. A. Clarke. Data
flow analysis for checking properties of concurrent
Java programs. In Proc. of the 21st Intl. Conf. on
Soft. Eng., pages 399–410, Los Angeles, 1999.

[17] Robby, M. B. Dwyer, and J. Hatcliff. Bogor: An
extensible and highly-modular model checking
framework. In Proc. of the 4th Joint Meeting of the
European Soft. Eng. Con. and ACM SIGSOFT
Symposium on the Foundations of Soft. Eng.
(ESEC/FSE 2003), March 2003.

[18] R. W. S. Rodrigues. Formalising UML activity
diagrams using finite state processes. In Proc. of the
3rd Intl. Conf. on the Unified Modeling Language,
York, UK, Oct. 2000.

[19] S. D. Stoller. Model-checking multi-threaded
distributed java programs. In Proc. of the 7th Intl.
SPIN Workshop, pages 224–244, 2000.

[20] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In Proc. of the Intl. Conf. on
Automated Soft. Eng., Sept 2000.

[21] A. Wise. Little-JIL 1.0 language report. Technical
Report TR 98-24, University of Massachusetts,
Department of Computer Science, 1998.

[22] A. Wise, A. G. Cass, B. S. Lerner, E. K. McCall, L. J.
Osterweil, and Stanley M. Sutton, Jr.. Using Little-JIL
to coordinate agents in software engineering. In Proc.
of the Automated Soft. Eng. Conf. (ASE 2000), pages
155–164, Grenoble, France, September 2000.

[23] W. J. Yeh and M. Young. Compositional reachability
analysis using process algebra. In Proc. of the Symp.
on Testing, Analysis, and Verification (TAV), pages
49–59, October 1991.

284

