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Abstract. Robot control in nonlinear and nonstationary run-time en-
vironments presents challenges to traditional software methodologies.
In particular, robot systems in “open” domains can only be modeled
probabilistically and must rely on run-time feedback to detect whether
hardware/software configurations are adequate. Modifications must be
effected while guaranteeing critical performance properties. Moreover, in
multi-robot systems, there are typically many ways in which to compen-
sate for inadequate performance. The computational complexity of high
dimensional sensorimotor systems prohibits the use of many traditional
centralized methodologies. We present an application in which a redun-
dant sensor array, distributed spatially over an office-like environment
can be used to track and localize a human being while reacting at run-
time to various kinds of faults, including: hardware failure, inadequate
sensor geometries, occlusion, and bandwidth limitations. Responding at
run-time requires a combination of knowledge regarding the physical
sensorimotor device, its use in coordinated sensing operations, and high-
level process descriptions. We present a distributed control architecture
in which run-time behavior is both preanalyzed and recovered empirically
to inform local scheduling agents that commit resources autonomously
subject to process control specifications. Preliminary examples of system
performance are presented from the UMass Self-Adaptive Software (SAS)
platform.

! This work was supported by AFRL/IFTD under F30602-97-2-0032 (SAFER),
DARPA/ITO DABT63-99-1-0022 (SDR Multi-Robot), and NSF CDA-9703217 (In-
frastructure).

P. Robertson, H. Shrobe, and R. Laddaga (Eds.): IWSAS 2000, LNCS 1936, pp. 161–180, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



162 D. Karuppiah et al.

1 Introduction

Much of current software development is based on the notion that one can cor-
rectly specify a system a priori. Such a specification must include all input
data sets which is impossible, in general, for embedded sensorimotor applica-
tions. Self-adaptive software, however, modifies its behavior based on observed
progress toward goals as the system state evolves at run-time [10]. Achieving
self-adaptation requires knowledge of software structure as well as a means of
measuring progress toward the goal. Current research in self-adaptive software
draws from two traditions, namely control theoretic and planning.

The control theoretic approach to self-adaptive software treats software as
a plant with associated controllability and observability issues[9]. Time-critical
applications require the ability to act quickly without spending large amounts
of time on deliberation. Such reflexive behavior is the domain of the control
theoretic tradition. Control output decisions are based on observations of the
plant’s state. A goal is reached when the controller drives error between an
input reference state (software specification) and the current system state to
zero. Traditionally, control theoretic approaches to physical plants ignore issues
of resource allocation and scheduling - robust control seeks to guarantee boun-
ded performance degradation in the face of bounded parameter variation and
adaptive control seeks to estimate the parameters of the controller and/or the
plant in order to optimize closed-loop behavior.

Traditions in planning are also meaningful to self-adaptive software. Planning
enumerates process state, possible actions, and desired goals in an effort to find
a sequence of actions which advance it toward the goal. As actions are carried
out, various artifacts can be predicted and resources can be scheduled to opti-
mize performance. In the planning approach to self-adaptive software, software
components are treated as resources [13]. A particular schedule may not be rea-
sonable because it violates resource limits or causes the system to diverge from
its goal. In this situation, a planning system may find a sequence of actions which
advances (partially) toward a goal specification. The ability to make tradeoffs
and perform such higher level reasoning is the domain of the planning tradition.
Planning for large complex systems is both time and compute intensive.

How can a system react to time critical events while at the same time, make
tradeoffs and perform high level reasoning? This is known as the planning versus
reaction dilemma. In the UMass Self-Adaptive Software (SAS) research project,
we take an approach which combines the control theoretic and planning traditi-
ons where appropriate to manage complex self-adaptive software systems.

High-level deliberation and low-level reactivity are valuable in the control
of autonomous and self-adaptive systems. A successful implementation of such
a hybrid architecture would permit the system to make use of prior knowledge
when appropriate and to respond quickly to run-time data. The central open
question appears to be deciding how reacting and deliberating should interact
in a constructive fashion. We have adopted a perspective in which the control
hierarchy is adaptive at every level. Low-level control processes parameterized
by resources interact with the domain continuously and recover run-time context
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observable by the working set of control. This kind of context feedback permits
a high-level process planner to re-deploy resources. Over time, robust plans for
interacting with specific problem domains are compiled into comprehensive re-
active policies. State descriptions evolve to express likely run-time context at
the highest levels and reactive policies adapt to handle run-time contingencies
at the lowest levels [14].

We are concentrating on how resources, distributed in a non-uniform manner
over multiple robot platforms can be coordinated to achieve mission objectives.
Our approach relies on technologies that produce flexibility, resourcefulness, high
performance, and fault tolerance. Specifically, we are interested in (1) how cross-
modal sensory front-ends can be designed to provide mission-specific percepts,
(2) how perceptual behavior can incorporate sensory information derived from
two or more robotic platforms carrying different sensors and feature extraction
algorithms, and (3) how team resources can be organized effectively to achieve
multiple simultaneous objectives.

A family of resource scheduling policies, called Behavior Programs (B-Pgms),
is downloaded into members of a working group of robots as part of the configu-
ration process. Each B-Pgm contains a set of (previously evaluated) contingency
plans with which to respond to a variety of likely run-time contexts and is re-
sponsible for orchestrating the run-time behavior of the system in response to
percepts gathered on-line. If required, run-time contexts may be handled by ma-
king use of contingency plans in the B-Pgm, or by re-deploying resources at the
process planning level.

The UMass hybrid SAS architecture is based on a set of primitive, closed-loop
control processes. This framework allows hierarchical composition of the control-
lers into behavior programs (B-Pgms) for tracking, recognition, motion control,
and for a more complex human tracking scenario. The multi-robot platform is
designed to respond to multiple, simultaneous objectives and reasons about re-
sources using a high-level process description and control procedure using the
little-JIL process description language. Our goal is an ambitious, vertically inte-
grated software environment in which run-time data sets drive the organization
of behavior and contribute to the management of large and comprehensive soft-
ware systems. This document describes the very first experiments employing this
paradigm.

2 Sensory Primitives for Motion Tracking

A multi-objective system requires that the sensory algorithms are flexible to
support adaptation and reconfigurable on-line to facilitate fault-tolerance. Our
approach is designed to provide a set of sensor processing techniques that can
fulfill both low-level and high-level objectives in an open environment. Coopera-
tive interaction among members of the robot team requires the mission planner
to be effective in utilizing system resources across team members, including ro-
bot platforms, sensors, computation, and communication. In particular, we are
constructing robot behaviors across multiple coordinated platforms and sensors.
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To achieve the desired robustness, the platform is configured with a variety of
sensors and algorithms. Vision is the primary sensing modality, but it is comple-
mented by inexpensive pyroelectric sensors, sonar, infrared proximity sensors,
and (in the future) acoustic sensors. Multiple types of sensors are considered to
be distributed across several robot platforms to allow flexibility in mission plan-
ning and resource scheduling in response to hardware and algorithm failures.

2.1 Panoramic Imaging

Effective combinations of transduction and image processing is essential for ope-
rating in an unpredictable environment and to rapidly focus attention on im-
portant activities in the environment. A limited field-of-view (as with standard
optics) often causes the camera resource to be blocked when multiple targets
are not close together and panning the camera to multiple targets takes time.
We employ a camera with a panoramic lens1 to simultaneously detect and track
multiple moving objects in a full 360-degree view [3,12,16].

Figures 1 and 2 depict the processing steps involved in detecting and tracking
multiple moving humans. Figure 1 shows a panoramic image from a stationary
sensor. Four moving objects (people) were detected in real-time while moving in
the scene in an unconstrained manner. A background image is generated auto-
matically by tracking dynamic objects through multiple frames [5]. The number
of frames needed to completely build the background model depends on the num-
ber of moving objects in the scene and their motion. The four moving objects
are shown as an un-warped cylindrical image of Figure 2, which is a more na-
tural panoramic representation for user interpretation. Each of the four people
were extracted from the complex cluttered background and annotated with a
bounding rectangle, a direction, and an estimated distance based on scale from
the sensor. The system tracks each object through the image sequence as shown
in Figure 2, even in the presence of overlap and occlusion between two people.
The dynamic track is represented as an elliptical head and body for the last 30
frames of each object. The final position on the image plane is also illustrated in
Figure 2. The human subjects reversed directions and occluded one another du-
ring this sequence. The vision algorithms can detect change in the environment,
illumination, and sensor failure, while refreshing the background accordingly.
The detection rate of the current implementation for tracking two objects is ab-
out 5Hz. The motion detection algorithm relies heavily on the accuracy of the
background model at any given time in order to detect moving objects. Types of
changes in the background can be broadly grouped into two categories: changes
due to the illumination affecting pixel intensities at a fine scale; and changes of
surfaces in the environment such as the movement of objects.

It is quite difficult to take care of both cases simultaneously because the
first type requires a constant update while the second type requires a context-
dependent update. The low-level background estimation procedure is quite sim-
ple. The constant update is done on those regions of the image that are not
1 PAL-3802 system, manufactured by Optechnology Co.
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Fig. 1. Original panoramic image (768 x 576)

Fig. 2. Un-warped image, four moving people detected - top image; and track through
image sequence for the last 32 frames - bottom image.

classified as a moving object by the motion detection algorithm. We track each
region and keep a history of velocity for each as well. When the velocity falls
below a threshold and remains so for a period of time, it becomes a suitable can-
didate for part of the background. The assumption is made that humans will be
not be still for a long period of time. Therefore, they do not become part of the
background. Similarly, only when the velocity of an object exceeds a threshold,
is it classified as a possible human subject. This helps to avoid detecting some
objects that should remain part of background but are not completely stationary,
like the motion of tree branches, or the flicker of a computer monitor.

The adaptive background update improved the performance of the panoramic
sensors considerably. The above adaptation only provides a low-level mechanism
to handle the problem of maintaining an accurate background model. A more
elegant way would be to use the context as inferred by the reasoning at higher
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Fig. 3. Pyroelectric sensor.

levels of knowledge-based planning where all resources available might be em-
ployed. For example, an unconscious human subject will be still, so the low level
will include them in the background. However, using the pyroelectric sensor, we
might guess where the human is, particularly if the previous motion of the sub-
ject had been detected. This information could be passed to the vision sensors
to update the background accordingly.

2.2 Pyroelectric Sensor

The pyroelectric sensor2 is a Lithium Tantalate pyroelectric parallel opposed
dual element high gain detector with complete integral analog signal processing.
The detector is tuned to thermal radiation in the range that is normally emitted
by humans. Since the pyroelectric detector itself only responds to changes in
heat, the detector must be scanned. As shown in Figure 3, a thermal target is
identified as a zero crossing in the sensor’s data stream. We have implemented
such a sensor on a scanning servo motor with two control modes; the sensor may
saccade to a region of space designated by another sensor or pair of sensors, and
it can track the thermal signature (even when the subject is still) by oscillating
around the target heading. The result is a sensor that responds quite precisely to
human body temperature but with a rather poor lateral bandwidth. This is due
primarily to the scanning required to measure a zero crossing. To use this sensor
appropriately, it must be applied only when the predicted lateral bandwidth of
the subject is relatively small.

2.3 Stereo Head System

The stereo head platform3 is a high-performance binocular camera platform with
two independent vergence axes. As shown in Figure 10, it has four mechanical
degrees of freedom and each lens has three optical degrees of freedom.
2 Model 442-3 IR-EYE Integrated Sensor, manufactured by Eltec Instruments,

Daytona Beach, FL
3 BiSight System, manufactured by HelpMate Robotics, Inc., Danbury, CT
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Fig. 4. Closed-Loop Primitives for Controlling Attention.

There are several state-of-the-art tracking algorithms in the literature [1,11,
2]. Our tracking algorithm uses one of the cameras as an active eye and the
other as an passive eye. The active eye detects subsampled pixels of greatest
change in intensity between two consecutive frames. The passive eye correlates
multi-resolution fovea with the frame from the active eye. The stereo head is
then servoed to bring the pixel of greatest change into the fovea of the active
eye. Subsequently, the passive eye is verged to point its fovea to the same world
feature as the fovea of the active eye, extracting the spatial location of the object.

The accuracy of the spatial location of the object is dependent on its distance
from the stereo head system. This algorithm can only track single moving objects.

2.4 SACCADE-FOVEATE B-Pgm for Recovering Heading

The most primitive software process in this approach is an asymptotically stable
closed-loop controller [4,7]. Controllers suppress local perturbations by virtue of
their closed-loop structure. Some variations in the context of a control task are
simply suppressed by the action of the controller. Controllers also provide a basis
for abstraction. Instead of dealing with a continuous state space, a behavioral
scheme need only worry about control activation and convergence events. When a
control objective is met, a predicate is asserted in an abstract model of the system
behavior. The pattern of boolean predicates over a working set of controllers
constitutes a functional state description in which policies can be constructed.
The “state” of the system is a vector of such functional predicates, each element
of which asserts convergence for some control law and resource combination. The
state vector also, therefore, represents the set of discrete subgoals available to a
robot given these native control laws and resources.

Two closed-loop primitives are employed for motion tracking (see Figure 4).
The first, saccade, accepts a reference heading in space and directs the sensor’s
field-of-view to that heading. The second, foveate, is similar except that it accepts
heading references determined by a sensor signal. For example, the pyroelectric
sensor scans a small region centered on the current gaze and identifies the zero
crossing in the sensor output. The heading to the zero crossing is used as the
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Fig. 5. Behavior Program for Detecting and Measuring the Heading to a Motion Cue.

reference heading to control the sensor’s gaze. Within bandwidth limitations,
the result is that the pyroelectric sensor tracks the thermal source.

Localizing and tracking the motion of objects in the world is an important,
reusable behavior that can be realized in a number of different ways using a
variety of different sensors. Each sensor in a stereo pair recovers the heading
to a feature in the environment. When the imaging geometry of the pair is
suitable, the sensors can, in principle, be used to triangulate the spatial location
of the feature. Moreover, the control process for each sensor can be completely
independent of the other sensor processes. We have hand-crafted a B-Pgm for
accomplishing this task that is parametric in sensory resources. This B-Pgm is
illustrated in Figure 5 - it represents a family of run-time hardware configurations
for estimating the location of moving objects in space.

The state in the nodes of Figure 5 is the convergence status of the saccade
controller, φs, and the foveate controller, φf . That is, if φs is converged and φf

is not, then the state of the saccade-foveate process is 10. An X in the state
representation represents a “don’t care” or “don’t know” condition.

Given R, the set of sensor resources, the saccade-foveate B-Pgm (or template)
begins by directing a sensor r1 ∈ R to saccade to an interesting region of space.
If this process fails for some reason, it is presumably an error in the motor
component for the sensor and it reports a fault. If no hardware fault is detected
and the sensor achieves state 1X, then an independent, periodic, closed-loop
process φf is engaged whose goal it is to bring the centroid of the local motion
cue to the center of sensor r1’s field of view. If no motion cue is detected, then
a report of “no target” is generated. If a target motion cue is detected and
foveated, then the sensor achieves state X1 where the target is actively tracked.
Consequently, sensor r1 is likely no longer at the position specified by the original
saccade. As long as subsequent foveation cycles preserve this state, a heading to
the motion cue is reported. If, however, the sensor state becomes X0, then the
target may be moving too quickly and a “target lost” report is generated. When
two sensors are simultaneously in state X1, then the pair of active B-Pgms are
reporting sufficient information for estimating the spatial location of this motion
cue by triangulation. Each unique resource allocation r1, r2 ∈ R produces a
hypothesis of varying quality depending on the context of the localization query.

This policy does not rely on the physical quantity that is transduced; optical
flow, thermal radiation, acoustic, etc. It assumes, however, that the two partici-
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pating observers are foveated on the same entity in the world. While incorrect
correspondence can lead to anomalous results, cross-modality can be used to
advantage. For example, if the location is computed from consistent visual mo-
tion and pyroelectric information, then we may detect “warm-moving” bodies.
Such a strategy may be attractive when detecting and localizing human beings
as opposed to other types of moving objects.

2.5 “Virtual” Stereo Pairs

Any fixed-baseline stereo vision system has limited depth resolution due to the
imaging geometry, whereas a system that combines multiple views from many
stationary or movable platforms allows a policy to take advantage of the current
context and goals in selecting viewpoints. A “virtual stereo” policy is a policy
that engages different sensor pairs as the target moves through ill-conditioned
sensor geometries. Although this policy is more flexible than a fixed pair, this
approach requires dynamic sensor (re)calibration and accuracy in the depth of
a target is limited by the quality of calibration. The virtual stereo strategy
may be particularly effective with a pair of mobile panoramic sensors because
they have the potential of always seeing each other and estimating calibration
parameters[16]. Once calibrated, they can view the environment to estimate the
3D information of moving targets by triangulation, and maintain their calibra-
tion during movement by tracking each other. Suppose we have two panoramic
cameras with the same parameters. Both of them are subject to planar motion
on the floor and are of same heights from the floor. If they can see each other and
at the same time see a target T, then we can compute the bearing and distance
of the target after a dynamic calibration of the two cameras. Suppose that O1
and O2 are the viewpoints of the two cameras and they can be viewed by each
other (as M21 and M12). B is the baseline (i.e. distance O1O2) between them.
The projection of a point T is presented by T1 and T2 in the two cameras. Then
a triangulation O1O2T can be formed (Fig. 7) so that the distances from the
two cameras to the target can be calculated as

D1 = B
sinφ2

sinφ0
= B

sinφ2

sin(φ1 + φ2)
, D2 = B

sinφ1

sinφ0
= B

sinφ1

sin(φ1 + φ2)
(1)

By defining an arbitrary starting orientation for each cylindrical image, angles
φ1, φ2 (and φ0) can be calculated from the following four bearing angles: θ1 and
θ2, the bearings of the target in image 1 and image 2 respectively, β12 and β21, the
bearing angles of camera 1 in image 2 , and camera 2 in image 1 respectively.
In order to estimate the distance of a target, we need first to estimate the
baseline and the orientation angles of the two panoramic cameras by a dynamic
calibration procedure. Several practical approaches have been proposed for this
purpose [14]. The basic idea is to make the detection and calculation robust and
simple. One of the approaches is to design the body of each robot as a cylinder
with some vivid colors that can be easily seen and extracted in the image of
the other robot’s camera. The estimated triangulation error can be computed
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Fig. 6. Panoramic stereo geometry

by partial differentials of 1 as

∂D1 =
D1

B
∂B + D1 |cot(φ1 + φ2)| ∂φ1 +

D2

sin(φ1 + φ2)
∂φ2 (2)

where ∂B is the error in computing the baseline B, and ∂φ1 and ∂φ2 are the errors
in estimating the angles φ1 and φ2 from the two panoramic images. Basically, the
distance error is determined by both the error of the baseline and the errors of
the angles in the triangulation approach. Given the dynamic calibration method,
we can use Equation 2 to find the error bound of the distance estimation in any
triangulation configuration, and further to find an optimal configuration of the
virtual stereo with minimum estimating error.

We have developed the algorithms for mutual calibration and 3D localization
of motions using a pair of panoramic vision systems each running the saccade-
foveate B-Pgm. The first implementation has been carried out by cooperation
between two stationary cameras. Figure 7 shows a stereo image pair from two
panoramic sensors.

2.6 Peripheral and Foveal Vision Integration

The human eye has a wide-angle, low resolution field in its peripheral view, and
a high resolution narrow field in its foveal view, a combination that works coo-
peratively in a highly robust manner. We can find a moving object within the
peripheral view and then start a tracking behavior by peripheral-foveal coope-
ration. The key point here is the natural cooperation of peripheral and foveal
vision as a real-time behavior operating within a common coordinate system.

As we consider a computer implementation of this behavior, we note diffe-
rences with human capability. Humans must rotate the head so that the peri-
pheral system covers the moving object in its field of view. Furthermore, mul-
tiple objects in very different directions cannot be tracked simultaneously. The
panoramic-panoramic sensor pair (or any other pair applicable under the run-
time context) can provide the spatial reference for a saccade-foveate B-Pgm on a
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Fig. 7. 3D localization by the panoramic stereo system - top two images; and a closeup
image of the Human Subject (the first author) localized - bottom image.

standard zoom camera mounted on a small pan/tilt platform. The pan/tilt/zoom
imaging system may then undergo a saccade to the interesting motion cue. From
here it can foveate on the cue and zoom if necessary for detailed processing.

High resolution color images obtained from the pan/tilt/zoom camera can be
used to determine the identity of the object of interest. In particular, a challen-
ging problem is to separate and track individuals in a group (or even a crowd).
Using contour extraction algorithms based on motion cues, the pixels that cor-
respond to the object can be extracted from the background.

We have successfully set up a peripheral and fovea vision system, and im-
plemented a cooperative algorithm for processing moving objects. The system
detects any moving object in the view of the panoramic camera, and tracks and
identifies it through the zoom camera. Figure 7 illustrates the image resulting
from such a process where the spatial reference to a motion cue is provided by
the panoramic-panoramic image pair. The suspicious character in this panoramic
image pair has been scrutinized successfully using the pan/tilt/zoom camera.

3 The Containment Unit

B-Pgms can be used to coordinate the behavior of a fixed set of resources. In
[6], we show how to build B-Pgms automatically using reinforcement learning
that approach optimal policies for a fixed resource allocation. The hierarchical
generalization of a B-Pgm is the Containment Unit (CU). The CU is an active
entity designed to represent a family of optimal contingency plans (B-Pgms)
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parameterized by resource commitments. Its objective is to “contain” faults.
A fault is generally construed to be any functional violation of the behavior
associated with the CU: real-time constraints, liveness of constituent hardware,
or performance constraints. If a sensor fails, it is the role of the CU to select an
alternative B-Pgm to provide the same type of information and to inform the
process that activated the CU of the impact on the expected performance.

The structure of a CU is presented schematically in Figure 8. It accepts re-
ports from subordinate CUs and estimates the state necessary to make local
resource allocation decisions. Multiple instances of a CU may be active concur-
rently, each with a resource specification that determines the range of variation
permitted locally in the strategy for executing the CU directive. Global resource
constraints are achieved by limiting the range of autonomy each CU enjoys
through careful specification of its proprietary resources. In general, specific B-
Pgms may be applicable only in prescribed contexts. For example, adequate
illumination may be necessary to employ B-Pgms that use vision sensors, or
limited target velocity may be required in order to track with a scanning py-
roelectric sensor. These “contexts” can be loaded when a CU is activated and
then verified at run-time, or they may be recovered by monitoring the active
B-Pgm’s performance. The CU determines how to reconfigure lower-level CUs
and/or whether to report recovered context to high-levels.

3.1 CU Supervisor: Domain-Independent Behavioral Expertise

Some aspects of a particular B-Pgm’s performance in situ are determined ent-
irely by attributes of the participating resources. The most obvious example of
critical local state is the liveness of the participating hardware. Other locally de-
termined attributes can also be important with respect to overall performance.
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Consider a pair of vision sensors performing as a virtual stereo pair to localize a
moving target. Localization will be poor if the uncertainty in the position of the
participating sensors is large or the saccade-foveate B-Pgm may behave poorly if
the target approaches a collinear spatial relationship with the sensor pair. These
conditions are entirely determined by examining attributes of the sensors (their
relative spatial arrangement) and the result of the B-Pgm coordinating them
(the target position). Circumstances such as these are completely determined in
the local state of the CU supervisor without higher-level deliberation. We will
develop an example of the CU supervisor in Section 5.

The memory structure illustrated in Figure 8 records the reported results of
all subordinate CUs, estimates state information required to make local resource
allocation decisions, and supports the interpretation and reporting of context
from the CU. Task specific information such as target location and current fault
conditions are stored. The structure is maintained by a communication protocol
over Internet sockets between the active B-Pgms and the CU. If resources reside
on disparate architectures and operating systems, the memory structure will also
provide the CU with a common communication interface to all subsystems and
forms the basis for the High Level Interface.

3.2 Context: Domain-Dependent Behavioral Models

Open environments present data sets to sensorimotor processes that cannot be
predicted at process configuration time in general and must be observed at run-
time. When peculiar or unexpected environments cause the behavior of the sy-
stem to deviate from expectations, a higher-level reconfiguration must modify
system performance while remaining within specifications. If a specific B-Pgm
proves to be inadequate in a particular run-time context, the context is passed
upward in the control hierarchy to a process manager which may choose to real-
locate resources. Over time, some of these reconfiguration decisions that depend
strongly on controllable system components might be compiled into appropriate
CU supervisors. However, other contexts will be determined by the run-time en-
vironment, and the deliberative process planner must model these dependencies
at a higher level. We are studying mechanisms where the process description can
incrementally model these environmentally determined contexts and manage re-
sources so as to recover critical run-time, environmentally determined contexts
in the course of the mission.

4 The Little-JIL Agent Coordination Language

Little-JIL provides rich and rigorous semantics for the precise specification of
processes that coordinate multiple agents [15,8]. In the context of our SAS plat-
form, the agents consist of individual sensors, individual robots, or combinations
thereof. Little-JIL provides constructs for proactive and reactive control, excep-
tion handling, and resource management.
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A Little-JIL process defines a high-level plan to coordinate agents to act as a
team. A process is constructed of steps that are hierarchically decomposed into
finer-grained substeps. The steps and substeps are connected with dataflow and
control flow edges. Each step has a declaration identifying resources needed to
carry out that step and allows reasoning over interactions between resource spe-
cifications including the sensors, computational platforms, and communication
hardware that constitute a team of robots.

A process description typically specifies parts of the coordination policy pre-
cisely while deferring some choices until run-time. In this way, a step may be im-
plemented in several ways using different resources. Which choice is most appro-
priate depends on resource availability, timeliness and performance constraints,
and run-time context. These high-level decisions require reasoning across the
collection of robots as the task unfolds. This approach is particularly useful for
exception handling - a certain amount of reaction can be handled within the
CUs by dynamically selecting the appropriate B-Pgms. Some situations, howe-
ver, require higher level support. For example, consider a process intended to
track multiple people. Such a process might designate one sensor to watching
for new motion cues entering at a door and allocate the balance of the resources
to track targets already in the room. If a new motion cue occurs, the process
reacts by reassigning resources. The actual selection of resources and CUs and
thus the actual instantiation of the system is made by the integrated capability
of robot planning and scheduling technologies whose description is outside the
scope of this paper.

The Little-JIL process control language as discussed above, provides a power-
ful means of exploiting knowledge to structure planning and learning by focusing
policy formation on a small set of legal programs. Moreover, at lower levels, new
and enhanced processes are constructed. The objective is to constantly optimize
and generalize the active B-Pgm during training tasks, and to return it at the
end of the task better than we found it. These B-Pgms actually consist of many
coordinated primitive controllers but are thought of as discrete abstract actions.
Subsequent plans and learning processes can exploit this abstraction.

Figure 9 shows a sample Little-JIL process that uses sensors to track mul-
tiple humans. We assume that this process specification is in the context of a
partial model of the run-time environment. The root step of the process is Track
Humans. This step is decomposed into two steps that run concurrently (denoted
by the parallel lines). One step is to track a human while the other step is to
watch the door. The Watch Door step requires use of the panoramic camera.

Track Human is a choice step. Dynamically, the system will decide which
of the three substeps to use. This decision is based on the resources available,
what time constraints there are on the tracking, and contextual issues, such as
whether there is good lighting or whether the target is moving quickly. One might
easily imagine many more than three choices here. Each choice requires one or
more resources and has some expected performance. The scheduler and runtime
system use knowledge about the context to assist in making the decision.



Software Mode Changes for Continuous Motion Tracking 175

Fig. 9. Sample Little-JIL Process Description for Tracking a Human Subject.

If another human enters the room, this results in an event that is handled
by a second Track Human step. This is simply a reference to the original track
human step and will result in a new instance of Track Human starting with
a new set of resources. This results in an exception, causing some replanning
and reallocation of resources to occur. Other exceptions can be used to adapt
locally (within the CU) during execution. For example, if there had been normal
lighting and the lights were turned off, we would expect an exception within the
currently active containment units that employ vision sensors.

5 Self-Adaptive Software (SAS) Experimental Platform

In our experimental platform, we have implemented three types of motion de-
tectors that are deployed at fixed and known positions in an indoor office-like
environment. The platform consists of an articulated stereo vision system, and
scanning pyroelectric sensor, and two panoramic vision sensors, as shown in Fi-
gure 10. In each instance of the saccade-foveate B-Pgm observations are collected
from sensor pairs that are sufficient to determine a spatial location of the moving
feature in the field of view. This family of functionally equivalent programs pro-
duces a spatial estimate of a motion cue with varying quality that could serve
as a spatial position reference to a subsequent sensory or motor control task.
Indeed, combinations of these strategies are themselves B-Pgms with reserved
resources for corroboration or for fault tolerance. Which of these to use in a
particular context is dependent on the task, the resources available, and the
expected performance based on accumulated experience.

5.1 Designing the CU Supervisor for Tracking Human Subjects

The CU Supervisor determines which B-Pgm (sensor pair) is recommended for
triangulation and tracking given the current state of the process. In our demon-
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Fig. 10. The “Smart Room” - Motion Tracking Platform.

stration, there are six unique pairs of sensors available. A boolean state predicate
describes the “liveness” of each pair. For a given pair, if both sensors are func-
tioning and they are not in a collinear configuration with the target subject, the
corresponding predicate is set to 1, otherwise it is set to 0. This is the role of the
state estimation component of Figure 8. Given a pattern in the “liveness” state
vector, the CU supervisor always chooses the pair of sensors with the highest
value with respect to the process’ objective function.

We have hand-crafted a Human Tracking CU supervisor for engaging sensor
pairs that deploys resources in the following priority-based hierarchy:

• Panoramic - stereo head (camera 1);
• Panoramic - stereo head (camera 2);
• Stereo-head (camera 1 and 2);
• Panoramic - pyroelectric;
• Stereo-head (camera 1) - pyroelectric;
• Stereo-head (camera 2) - pyroelectric.

Each resource allocation in this hierarchy, in turn, instantiates two concurrent
containment units for tracking motion with a single sensor. These subordinate
CUs execute the saccade-foveate B-Pgm described earlier and report to the track
human CU. Each CU in this hierarchical control process has the authority to
manage the resources reserved for them.

5.2 Experimental Results

The Human Tracking CU supervisor has been implemented to control the various
sensors in order to track a single moving person seamlessly through failure modes
captured in the liveness assertion. Some preliminary results are presented below.
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Fig. 11. Motion Tracking for the Pyroelectric-Stereo head and Pyroelectric-Panoramic
sensor pairs.
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Fig. 12. Motion Tracking for the Panoramic-Stereo head and Stereo Head sensor pairs.

Accuracy and Repeatability Experiments. To design any CU supervisor
that depends on the coordinated activity of multiple sensors, it is necessary to
model the performance of the individual sensors. We conducted a series of ex-
periments to determine the accuracy and repeatability of the sensors. At known
spatial locations, a motion cue was generated and observed from the different
sensors.

It was observed that the panoramic sensors were both accurate and repeata-
ble, the stereo head is accurate but not repeatable, and the pyroelectric sensor
was repeatable but not accurate. The data was also used to examine the quality
of triangulation on the motion cue by different sensor pairs. As expected the
quality degraded as the motion cue approached the line joining a sensor pair or
a collinear configuration. Because such a configuration is not desirable we call
this a collinearity fault.

Tracking a Human Subject. The next set of experiments evaluated the task
of tracking a single moving person using combinations of the four sensors. The
results are shown in Figures 11, 12, 14 and 13. Figure 11 shows the tracks
of the Panoramic-Pyroelectric pair (Tay) and the Pyroelectric-Stereo head pair
(Tyi). As the motion track crosses collinear sensor geometries, the performance
degrades as expected.
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Fig. 14. Motion Tracking for the Panoramic-Panoramic sensor pair.

Figure 12 shows the tracks of Panoramic-Stereo head pair (Tai) and Stereo
head alone (Tii). Target tracking using stereo head alone can be quite bad due
to its small stereo baseline and mechanical properties [2].

Our next demonstration shows the performance of the CU supervisor. The
CU supervisor is designed to address run-time contexts (e.g. tracking precision,
sensor liveness faults, and collinearity faults) by effecting software mode changes
in response to feedback from the sensors. Figure 13 shows that the Track Human
CU supervisor was effective in handling these run-time contexts.

Figure 14 shows preliminary localization results using the Panoramic virtual
stereo pair (Tap). This sensor pair is highly reliable and is capable of accurate,
high velocity tracking for large regions of the room because of its tracking pre-
cision and the complete field of view they provide. Our current CU supervisor
does not include the Panoramic virtual stereo pair (Tap). However, as shown in
Figures 13 and 14, Tap performs as well as the current multi-sensor CU under
the conditions tested and so it will introduce a great deal of robustness when Tap

is integrated into the Track Human CU - since other sensors can fill in regions
where Tap performs badly or when other forms of sensor faults occur. In future
we plan to include our Panoramic virtual stereo pair into the SAS platform. This
addition will allow for multiple Human tracking at higher velocities.
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These results indicate the potential of our hierarchical self adaptive software
architecture in handling faults at both lower level (i.e. sensors) and higher level
(i.e. context of the motion cue).

6 Summary, Conclusions, and Future Experimental Work

Multi-robot scenarios present significant technical challenges regarding sensing,
planning, computing, and software methods and must support both reactivity
and predictability. Ultimately, one of the most desirable characteristics of a
multi-robot system is its ability to adapt to changes in the environment and
to internal faults - in hardware components and in end-to-end performance spe-
cifications. Thus, reconfigurability is critical.

Our current work presents preliminary results towards the responsiveness to
novel data sets and robustness that are critical to a multi-robot application.
The CU supervisor for tracking a human subject was able to handle individual
sensor faults gracefully as well as faults due to run-time context. Future expe-
rimental work is underway currently to demonstrate the ideas presented in this
paper more thoroughly. Some of the dimensions along which we will enhance the
experimental effort are described in the following sections.

Multiple Target Corroboration. When a single subject is tracked, excess
resources can be allocated to enhance robustness. However, when multiple sub-
jects are tracked, decisions must be made in order to allocate the right sets of
resources to the right targets. For example, if a subject stops moving, we may be
able to assign a single observer to it to verify that it remains stationary. When
movement is detected, it can trigger another re-distribution of resources. We
are developing process descriptions and resource scheduling algorithms that will
reallocate resources in a manner that depends on target type.

Inter-Process Communication. In related work, we are developing an inter-
process communication mechanism that guarantees that data will be shared
between distributed processes within a specified time bound. In this application,
it is less critical that communication events occur at precise times and more
important that reports from multiple sensors happened at roughly the same
time. Many techniques for relative process synchronization are being examined.

Hierarchical Process/Device Models. We already motivated a collinearity
fault for pairs of sensors. We also intend to build models of each individual
sensor’s lateral bandwidth since it is this information that speaks directly to
whether and how well a particular sensor can track a moving target. If context
(e.g., [ẋ ẏ]) recommends against using a slow sensor, it can unilaterally “take
itself out of the game.” On the other hand, if a rapidly moving subject changes
to a slower or stationary target, relatively high-performance and expensive re-
sources may be released and used more effectively elsewhere. We feel that models
will naturally reside at many levels of abstraction and we intend to both build
this information into the CU supervisors and acquire it empirically over time.
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Self Calibration. Eventually, some of our sensors will be mobile and will take
action prophylactically to avoid predictable faults. In order to do this, there
must be sufficient resources to identify the new and changing sensor geometries.
Resources previously used to track human subjects must be orchestrated to track
spatially reconfigurable sensors.
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