Experience Using the JIL Process Programming Language
to Specify Design Processes

Stanley M. Sutton Jr., Barbara Staudt Lerner, and Leon J. Osterweil
Computer Science Department

University of Massachusetts
Ambherst, Massachusetts 01003

ABSTRACT

Software design is a complex process that requires sig-
nificant human involvement, collaboration, and coordi-
nated use of tools and artifacts. Software design meth-
ods describe software design in general terms but ne-
glect many details that are important to executing spe-
cific design processes. A process program that defines
a design process clearly and precisely should be an im-
portant aid to supporting and reasoning about the pro-
cess. The demands placed on a process programming
language in defining a software design process are great,
including the need for flexible control flow, error han-
dling, resource management, agent coordination, and
artifact consistency management. This paper describes
the use of JIL, a process programming language, in the
definition of a process supporting Booch object-oriented
design. The paper illustrates the need for precision and
clarity in defining software processes, and it indicates
how various of the features of JIL are effective in meet-
ing these needs.

1 Introduction

Software development and maintenance are widely
agreed to be particularly complex undertakings. They
entail the development and management of diverse soft-
ware artifacts, through the coordination of various hu-
man and automated agents, under the control of nu-
merous complex processes. We believe that effective
processes can be key in successfully coordinating agents
to develop the needed artifacts. Our work aims to pro-
duce processes that are demonstrably effective in these
ways. A major obstacle in presenting demonstrably ef-
fective processes has been the lack of languages that are
adequate vehicles for this.

In our past work we have presented languages designed
to support the clear and precise exposition of process.
Most recently we have proposed that the JIL [16] pro-
cess programming language incorporates a mix of fea-
tures and abstractions that seem to offer promise of
supporting the clear and precise exposition of complex

This work was supported by the Advanced Research Projects
Agency under grant F30602-94-C-0137 and F30602-97-2-0032.

Submitted to ICSE 98

software process ideas. While JIL seems promising, its
success has certainly not yet been demonstrated.

In this paper we describe an effort to validate whether
JIL can be used to clearly and precisely express complex
software processes. We selected a popular software de-
sign method, Booch Object Oriented Design (BOOD),
and attempted to determine which language features
are needed in order to express the process for perform-
ing BOOD. We also evaluated the degree to which the
features and abstractions incorporated into JIL support
these needs.

JIL currently exists as a prototype language specifica-
tion that is more complete and detailed in some areas
than in others. One major goal of the work described
here was to identify areas in which further elaboration
is needed, and areas in which evolution of the current
language notions is indicated.

The remainder of this paper is organized as follows. Sec-
tion 2 provides background on object-oriented design
processes and indicates some of the challenging aspects
of these processes. Section 3 provides an overview of the
JIL process programming language. Section 4 then dis-
cusses in detail some specific semantic complexities of
design processes, drawing on BOOD for examples, and
shows how JIL can be used to address those complexi-
ties. Section 5 presents an evaluation of our experience,
and Section 6 describes our status and future work.

2 Object Oriented Design Process

Design is an inherently complex activity that is becom-
ing increasingly critical as society and its infrastruc-
ture become increasingly computerized. Numerous re-
searchers have proposed object-oriented design methods
to help designers approach design processes in a system-
atic fashion with the goal of achieving higher quality de-
signs as a result [3, 11, 5, 19, 7]. Numerous tools, such
as Rational Rose, Graphical Designer, and Paradigm
Plus' have been developed to support these methods,

IRational Rose-http://www.rational.com/products/rose/;
Graphical Designer-http://www.advancedsw.com/; Paradigm
Plus—http://www.platinum.com/products/appdev/pplus_-
ps.htm.

but these tools are primarily aimed at assuring that de-
sign artifacts are expressed in correct notation. They do
not aim to support the processes by which these arti-
facts are developed, evaluated, and evolved. A process
program can provide the framework that allows such
tools to be used effectively within the guidelines of these
methods [12].

Even when a specific method is used, object-oriented
design remains an activity that is inherently iterative,
has a flexible flow of control, and, perhaps most impor-
tantly, is largely driven by human innovation. Unlike
workflow applications, which are often more mechanical
in nature, design processes must allow for a great deal of
flexibility, reactivity, and exception management. More-
over, the users of a process must feel that it is providing
support and guidance rather than authoritarian control.

In this paper, we use Booch Object Oriented Design
(BOOD) [3] as an example method to demonstrate how
the constructs in JIL provide the functionality to meet
the demands of design process specification. BOOD
consists of four main steps: identifying classes and ob-
jects, identifying the semantics of the classes and ob-
jects, identifying the relationships between the classes
and objects, and implementing the classes and objects.
These steps are repeated iteratively, typically starting
with high levels of abstraction and iteratively adding
lower levels of abstraction. Each of these major steps
is further subdivided into smaller steps. We show how
JIL’s step composition and proactive control model can
meet these needs.

In many cases, the choice of which substeps to use and
the order in which they are applied is left to the de-
signer. For example, during the identification of classes
and objects, a designer can apply any of the techniques
of classical object-oriented analysis, behavior analysis,
or use case analysis. We show how JIL can support this
freedom of choice. In some cases, however, a project
manager might require the use of a particular technique,
in which case a refinement of the BOOD process pro-
gram could require the use of that technique rather than
making it optional. By modifying the process program,
these variations in the method can be specified and en-
forced.

The successful completion of a BOOD step is character-
ized by well-formedness conditions on design artifacts
such as those representing the definition of classes, ob-
jects, and their relationships. These are milestones of
the BOOD process and are represented as postcondi-
tions in the JIL process program. JIL’s reaction and
exception-handling mechanisms support precise specifi-
cation of actions to take in the event that postconditions
do not hold.

It should be clear from this discussion that the role of

Submitted to ICSE 98

humans in the design is central even when the design is
formalized with a process program. Humans are respon-
sible for performing many of the steps, often choosing
which steps to perform, checking most of the postcondi-
tions, and fixing problems that result in failures of the
postconditions. JIL supports humans in these tasks,
but it also provides the ability to track the progress
of the design process, to assist in the assignment and
reassignment of steps to agents, both human and auto-
mated, and to manage contention for resources among
the agents. The value of these capabilities increases with
more complex designs and larger design teams.

3 Overview of JIL

JIL [16] is a process-programming language intended to
support the development of high-level process abstrac-
tions through a collection of powerful and easy to use
semantic constructs. JIL represents processes as com-
positions of steps. The specification of a step is defined
in terms of a number of elements. Each element defines
a specific aspect of step semantics, such as data, control,
resource usage, or consistency requirements. For most
elements, the actual element definitions appear in a sep-
arate body. In this section, we give a flavor of JIL by
presenting an example step specification and describing
the elements that appear in step specifications.

Figure 1 contains an example step specification in JIL.
This specification represents the first step of the BOOD
process. While this example does not include all possi-
ble elements of a step specification, it is representative
of their basic style. Elements not present in this exam-
ple will be seen in later examples. Briefly, the elements
of a step specification are as follows:

Objects and declarations: Parameters and local
data used by the step.

Resources: Specifications of resources needed by the
step, including people, software, and hardware. People
may be represented as specific individuals or by roles
and skills. Software may include tools, services, and
systems. Hardware may include computer systems and
non-computer objects.

Steps: Identification of the substeps of a step (which
are themselves steps). The substeps are used within the
control flow elements described below.

Activity: Identification of the unit containing an im-
perative definition of the actions the step takes when it
is invoked. This is typically an embedding of substep
invocations into traditional programming constructs.?
2Note that activity as used in this paper generally refers to a

JIL language construct, not to elements of a design method as in
Booch [3].

STEP Booch_Process IS

0BJECTS
Req_file: FILE;
Data_dictionary: DICTIONARY;
Interface_file: FILE;

STEPS:
Identify_Classes_and_0Objects;
Identify_Class_and_Object_Semantics;
Identify_Class_and_Object_Relationships;
Implement_Classes_and_0bjects;
Propagate_Requirements_Update;

ACTIVITY: Booch_Process_Activity;

REACTIONS: Booch_Process_Reactions;
PRECONDITIONS:
FROM Requirements_Constraints USE
Approved (Requirements_File);

POSTCONDITIONS:
FROM Design_Constraints USE
Interface_Files_Complete(
Data_Dictionary, Interface_Files);

HANDLERS: Booch_Process_Handlers;
END Booch_Process

Figure 1: Specification for Step Booch_Process

Reactions: Identification of the unit that specifies
programmed reactions to triggering events. Events may
include artifact updates, process control events, and
non-local exceptions, while the reactions typically in-
clude substep invocations.

Step execution constraints: Restrictions on the
relative execution order of substeps. These can be used
to constrain the runtime behavior of the activities and
reactions or to drive substep execution directly.

Preconditions, constraints, postconditions:
Consistency conditions that must be satisfied (respec-
tively) prior to, throughout, and subsequent to the ex-
ecution of the step. Conditions may refer to product,
process, or resource state.

Handlers: Identification of handlers for local excep-
tions. Handlers can invoke substeps, thus exception
handling can use the full power of JIL to recover from
€rTors.

Submitted to ICSE 98

The elements in a step specification represent a variety
of semantics that are important to the definition, analy-
sis, understanding, and execution of software processes
in general. Steps are important not only as a process
modeling construct in and of themselves, but also as a
mechanism for binding and scoping the semantics rep-
resented by these various elements.

As suggested by the example in Figure 1, JIL is a fac-
tored language. By this we mean that each element may
be included or omitted from a step specification as is ap-
propriate for the step at hand, leading to a specification
with or without the corresponding factor. To give just
some examples, resource specifications or step execution
constraints may be omitted (as in the example), or the
activity or reactions may be omitted, or preconditions
and postconditions may be omitted. This factored ap-
proach allows processes to be specified in just enough
detail, and in just those terms, that are relevant to the
process and to the needs of the people and the organi-
zation for which it is being defined. The combination of
powerful semantic constructs with a factored language
design leads to a language that is both expressive and
flexible, thereby promoting precision, adaptability, and
ease of use.

The Julia process-execution engine is designed to sup-
port the execution of JIL process programs (JIL stands
for Julia Input Language). Julia will provide a vari-
ety of services related to the execution of JIL process
programs and management of JIL processes. The Julia
architecture is discussed in more detail in [15]; relevant
aspects are discussed here where appropriate.

4 Supporting Design Processes

Design methods are typically described in relatively gen-
eral terms, omitting many details so as to be adaptable
to, and adoptable by, a wide variety of organizations
and projects. In effect, they define generic process ar-
chitectures [13]. Design methods also typically empha-
size nominal behavior, that is, they describe how the
design process would proceed under ideal conditions.
They tend to omit aspects related to handling errors,
propagating changes, and accommodating inconsisten-
cies. Additionally, design methods tend to focus on the
actions of an individual designer and do not address
collaboration among designers or the allocation of re-
sources to individual designers. Thus, the actual execu-
tion of design processes requires addressing many issues
and performing many activities that are not defined by
design methods. The handling of these additional is-
sues and activities is a significantly complicating factor
in actual software design processes.

If actual software design processes (as opposed to pro-
cess architectures) are to be defined, then the range of
relevant concerns must be addressed. Moreover, pro-

cess definitions should be clear and precise, so as to
promote understandability and facilitate execution con-
sistent with the intended definition. However, design
processes have a number of features that make them too
complex to be described effectively using simple work-
flow models or standard programming languages. These
features of design processes revolve around the human
creative element, the need to cope with a changing envi-
ronment, the iteration and backtracking that are com-
monplace yet unpredictable in design, the management
of teams of designers contending for limited resources,
and the need for ensuring consistency of design artifacts
even though they are being developed by multiple de-
signers in parallel.

Programming languages are computationally powerful
but their abstractions are relatively low level and do
not speak directly to many process concerns. Workflow
languages tend to be higher level but relatively limited
computationally. For example, they typically lack sup-
port for some important kinds of process semantics (e.g.,
exception handling). Many languages have been pro-
posed for software process programming, but many of
these bear close resemblance to programming languages
(e.g., [4, 14, 10, 9, 8, 1]) or to workflow languages (e.g.,
[6, 2]), and thus they tend to suffer from the same limi-
tations. In this section, we elaborate on selected aspects
of design processes with examples from BOOD, provid-
ing explanation of how JIL supports these aspects of
the design process. The particular aspects of design
processes we address are flexible control flow, coordina-
tion of people and tools, coping with errors, and artifact
consistency.

4.1 Flexible Control Flow

One major challenge in defining a design process lies in
providing enough clarity and precision to assure the cre-
ation of a design that has the specific quality attributes
that have been selected for the particular project. At
the same time, though, designers must retain enough
flexibility within the approved process to use their cre-
ative talents effectively. A good design process must
also be able to react to events that might affect the nor-
mal flow of control through the process, such as changes
in the requirements or identification of an error in the
design. In this section, we provide some examples of the
need for clear, precise, yet flexible control flow in design
processes, including the nominal process flow and reac-
tions to events, and describe how JIL addresses these
needs.

4.1.1 Describing the Nominal Process BOOD is de-
scribed in terms of a sequence of steps. The steps are
decomposed into activities. The order in which the ac-
tivities are performed and the manner in which each
activity is performed are left unspecified. For example,

Submitted to ICSE 98

the first step of BOOD is to identify the classes and
objects for the design. The activities include classical
object-oriented analysis, behavior analysis, and use-case
analysis. BOOD does not specify an order for these ac-
tivities, or even, in fact, whether all must be carried
out. Such questions may be determined by the orga-
nization, project, or individual designer responsible for
the design.

JIL similarly describes a process as a collection of steps,
which may be divided into substeps. JIL provides a vari-
ety of constructs for specifying the control flow between
steps and their substeps. By means of these constructs
process control flow may be described simply or in de-
tail, strictly or flexibly. Decision points can be explicitly
represented, and those decisions may be made by human
or automated agents.

JIL supports simple specifications of process control
flow through the step execution constraints. These
are step composition operators that take as their ar-
guments steps or nested step composition operators.
The ORDERED operator specifies that steps must be exe-
cuted in the given order; this is simple but rigid. Three
other operators introduce various degrees of flexibility
into process execution. The UNORDERED operator speci-
fies that steps must be executed in some sequence, but
one that is not defined by the process program. The
PARALLEL operator specifies that the given steps must
be executed according to some nondeterministic serial or
concurrent interleaving. An example showing the com-
position of operators is shown below:

Ordered(Parallel(Classical_00_Analysis;
Behavior_Analysis;
Use_Case_Analysis),

Review_Class_Diagram) ;

Another useful step composition operator is the TRY,
which specifies that the given substeps are to be exe-
cuted in the given order, but stopping when one suc-
ceeds. In BOOD, the need for this control construct is
apparent when considering the substeps involved in im-
plementing classes and objects. If the chosen standard
strategy for implementing a class fails, then a custom
implementation is tried next. This effect is achieved
with the TRY operator:

TRY (UNORDERED (
Look_for_Inheritance,
Look_for_Objects_to_Delegate_to,
Look_for_Parameterized_Class),
Custom_Implementation);

The step execution constraints offer simple, clear, pre-
cise constructors for specifying process control flows

with strict or flexible behaviors and the opportunity for
human involvement in guiding process control. How-
ever, they are not computationally general. For de-
tailed process programming, JIL offers ACTIVITIES and
REACTIONS (the latter are discussed in Section 4.1.2).

The activity body of a JIL step provides for imperative
programming of proactive process control flows, that is,
what the step should do when it is invoked. The JIL
command syntax includes familiar forms of iteration and
branching statements. JIL also adds a PARALLEL com-
mand and commands by which substeps can be invoked
as threads or separate programs. (The programming of
parallel workflows in JIL is discussed at length in [17].)

An example of an activity body representing an imple-
mentation for step Identify_Classes_And_Objects is pre-
sented in Figure 2. The process program for this activ-
ity, although more complex than the examples of step
execution constraints, is still straightforward. More-
over, it is precise and clear about many important as-
pects of the process. The classes and objects are it-
eratively identified and reviewed. The identification is
performed according to a preferred analysis technique;
the technique used may vary from iteration to iteration
within a single execution of the step. The analysis tech-
nique is selected by a programmed step that is defined as
part of the process. The implementation of that step is
not shown here, but, depending on the implementation,
the preferred technique might be determined by query-
ing the project manager, querying the design engineer,
or querying a project database. In any case, the precise
function used in selecting the preferred analysis tech-
nique is defined explicitly by the process programmer,
and different selection functions may distinguish differ-
ent design processes. The class diagram that results
from analysis is reviewed at the end of each iteration.
Iteration continues until the class diagram passes review
or until the deadline for the step is near (in which case
an exception is raised).

It is easy to imagine other significant details of the pro-
cess that might be programmed differently. For exam-
ple, the preferred analysis technique might be obtained
once per invocation of the step instead of once per it-
eration of the loop, or when the deadline is imminent
an extension might be requested instead of raising an
exception, or the iteration that is now within the step
might be moved outside the step. None of these specific
issues is significant for the Booch Method, but they are
indicative of the wide range of concerns that must be
addressed in an executable process, and all can be stated
precisely and clearly in a JIL step activity body.

Although the process program for this activity is
straightforward, it would be difficult to capture this pro-
cess and its variants using just the step execution con-

Submitted to ICSE 98

ACTIVITY BODY
Identify_Classes_And_(Objects_Activity IS
BEGIN
Get_Deadline(Deadline);

Identify_And_Review: LOOP
INVOKE SUBPROCESS

Get_Preferred_Analysis_Technique(Technique) ;

CASE Technique IS

WHEN Classical => INVOKE SUBPROCESS
Classical_00_Analysis(...);

WHEN Behavioral => INVOKE SUBPROCESS
Behavior_Analysis(...);

WHEN Use_Case => INVOKE SUBPROCESS
Use_Case_Analysis(...);

END CASE;

INVOKE SUBPROCESS Review_Class_Diagram(
Class_Diagram_Approved) ;

exit when Class_Diagram_Approved;

IF Deadline_Near(Deadline) THEN
RAISE Deadline_Violation;
END IF;
END LOOP Identify_And_Review;
END Identify_Classes_And_Objects_Activity;

Figure 2: Example of JIL Activity Body

straints or other comparably simple execution models.
The difficulty is that even traditional programming lan-
guage constructs such as JIL includes (iteration, branch-
ing, etc.) come in a variety of forms and readily enable
the programming of an even wider variety of compos-
ite control structures. Simple control languages can be
elaborated to address more and more features, but at
some point they cease to be simple. While the JIL step
constraint language may continue to evolve to improve
the usefulness of its constructs, we will continue to keep
them simple. Activities are available for complicated
processes that can be most clearly expressed using tra-
ditional programming commands.

4.1.2 Reacting to Fvents During design, there are
typically events that occur outside of an individual de-
signer’s activity that affect the activity. For example, a
change to the requirements of a system may impact the
design that is in progress. BOOD does not describe such
external events or how to deal with them. An executable
process program, however, must be able to do so. At
a minimum, a requirements change must be evaluated
to determine its impact on the design. If a design is af-

fected by the change, the current design must be halted
and modified to accommodate the change. Changing
one component of the design might have ripple effects
on other parts of the design and perhaps even the bud-
get and schedule. Again, evaluating the effects of the
change and adjusting the design to accommodate the
change require extensive human involvement. The pro-
cess can assist in sending notifications to the designers
working on related parts of the design.

JIL provides the REACT control construct for program-
ming reactions to events. Reactions are attached to
steps. A reaction specification identifies the event to
which the reaction occurs and the action to take in re-
sponse to that event. Reactions may be used in com-
bination with, or instead of, an activity body. If a
step contains both an activity and reactions, the re-
actions can execute in parallel with the activity. Reac-
tions can respond to events based on changes in artifact
state (e.g., product updates), changes in process state
(e.g., step initiation and termination), changes in re-
source state (e.g., a resource becomes available), and
programmer-defined events (which must be explicitly
signaled).

The following shows a reaction from the top-level BOOD
step (Figure 1):

REACT TO Requirements_File.Update BY
INVOKE SUBPROCESS
Propagate_Requirements_Change;
END IF;
END REACT;

The reaction occurs in response to the update of the
requirements file. The reaction is to invoke a substep to
propagate the update through the design product. This
subprocess is itself a step. In a simple form, this might
just send electronic mail to all the designers. A more
complex form of this step might analyze the portion of
the requirements that changed, and, using information
about the relationships between the requirements and
the design, inform only the affected designers.

4.2 Coordination of People and Tools

One limitation of BOOD and other design methods is
that they focus on the activities that a single designer
undertakes. In real design processes, however, teams
of designers work concurrently to complete a design.
As a result, a practical design process must augment a
design method with management activities to schedule
and control the use of limited resources and to assign
tasks to individual designers. In this section, we de-
scribe how JIL supports these management activities.

4.2.1 Resource Management To complete a design,
a designer requires various resources such as the arti-

Submitted to ICSE 98

facts that serve as inputs to the design step and tools
and hardware used to assist in the completion of the
step. The designer may produce additional artifacts
that serve as inputs to other design steps. From a man-
ager’s (or process’s) perspective, each designer is also a
resource bringing unique skills to the development team.
When multiple designers work together, it is clear that
resource contention becomes an important issue. For ex-
ample, concurrent modification of design artifacts must
be controlled, the workload should be balanced across
the available designers, individual designers should be
assigned tasks consistent with their skills, computer re-
sources cannot be overloaded, and use of software tools
must adhere to licensing constraints.

Julia provides a resource management component that
allows a project manager or process programmer to de-
fine a resource model in terms of a set of programmer-
defined attributes. The resources are organized into a
classification hierarchy. A JIL program can reserve and
acquire resources either by naming a specific resource or
by requesting a resource that has particular attribute
values (including resources of a particular type). By
using attribute-value specifications to acquire resources
instead of explicit naming, the resource management
system can assign resources intelligently to balance the
load across the resources and adjust for changes in the
available resources, allowing the definition and exact ex-
ecution of the process to be guided by resource require-
ments and availability.

When the step is executed, the JIL interpreter in Julia
processes the resource specifications to obtain the indi-
cated resources from the Julia resource manager. Ju-
lia’s resource manager is a module that could be im-
plemented in the form of a human, or an automated
system, or a synergistic combination of the two.. If
the specified resources cannot be granted, the JIL inter-
preter raises an exception, as discussed in Section 4.3.

The scarcity or abundance of resources has important
effects on execution of a process. Yet the process defi-
nition cannot be specific to the details of resource avail-
ability. Thus, for example, abundant resources (e.g.,.
skilled designers) may well enable considerable paral-
lelization of effort. But it is unreasonable to write dif-
ferent process programs to depict different degrees of
parallelization. The separation of resource specification
in JIL, from resource binding in Julia, enables the writ-
ing of one single clear, precise process program that will
execute differently under different resource availability
situations.

4.2.2 External Execution Agents At some point in
any design process, it is necessary to rely upon the tal-
ents of the designers and the capabilities of the software
tools to complete the task. The development of a design

is substantially a human, creative activity that is facil-
itated by a variety of software tools. The consistency
of a design is evaluated with respect to conditions that
require a mix of manual and automated evaluation. To
a significant degree, then, the purpose of a design pro-
cess and process program is to define, coordinate, and
support the work of people and tools. JIL supports the
incorporation of people and software tools through the
concept of external agents, which can be human or au-
tomated. Activities in a JIL process can be exported
for execution outside the process by an external agent.
There is a uniform interface in JIL for dealing with both
human and automated agents. This enables process pro-
grams to ignore the differences between the two types
of agents except when process semantics otherwise re-
quire that those differences should be manifested in the
process program text.

Agents and resource management are related in the
sense that certain resources, namely people and software
tools, can serve as agents for a step. Binding agents to
a step is therefore performed by acquiring resources to
serve as the agents and then posting steps to the agendas
of those agents using the agenda manager component, of
Julia.

Figure 3 shows the specification of agent resources, that
is, designers, who will be assigned the responsibility of
completing the class and object identification step of
BOOD. The specification requests a number of design-
ers determined by the parameter Team_Size; these de-
signers may be skilled at any of the analysis methods
that might be used in the process.

4.3 Coping with Errors

In addition to reacting to events, a process must also be
able to cope with errors that arise during the execution
of a step. For example, a design tool might be a resource
required to perform a step. The process must be able
to deal with errors related to the inability to acquire
resources when they are needed or to the unexpected
loss of a resource after it has been acquired. The former
might occur if there are a limited number of licenses
allowing concurrent use of a tool, while the latter might
occur if the license expires or the machine on which the
tool executes becomes unavailable.

Exception handling is not usually described as part of
any design method. Nevertheless successful exception
handling is critical to the execution of any design pro-
cess. JIL provides an exception handling mechanism to
cope with errors that arise in invoking, executing, and
finalizing a step. Often humans will need to intervene
to fix the problem identified by an exception before the
step can proceed, so JIL exception handlers can invoke
further JIL steps, and the exception-handling process
can be defined in as much detail as appropriate. For ex-

Submitted to ICSE 98

STEP Identify_Classes_And_Objects IS
RESOURCES: Identification_Resources;

End;
RESOURCE SPECIFICATION
Identification_Resources IS

BEGIN

Engineers: Agent_Resource_Handle :=
Resource_Manager.Acquire_Agents(

Kind => Designer,
Number => Team_Size,
Skill => (Use_Case_Analysis,

Behavioral_Analysis,
Classical_00_Analysis),
Duration => Unlimited);

END Identification_Resources;

Figure 3: Example of JIL resource specification.

ample, if a postcondition on the step Identify_Classes_-
And_Objects fails because some part of the requirements
file was overlooked, the exception handler may reinvoke
the entire step on that part of the requirements.

The following is an example of a handler that copes
with the failure to acquire a needed resource during the
initialization of a step:

HANDLE Resource_Acquisition_Error BY
IF Resource_0f(
Resource_Acquisition_Error)
= Design_Tool
THEN
AWAIT EVENT
Resource_Available(Design_Tool);
CONTINUE;
END IF;
END HANDLE;

(Additional structured forms of handler are de-
fined [16].)

Besides resource management errors, exception handlers
are also useful for dealing with typical programming er-
rors and with exceptions raised by violations of con-
sistency conditions on design artifacts or process state
(discussed in Section 4.4).

If a step handles an exception successfully, the step
may be terminated successfully or retried. If the excep-
tion was raised during step initialization or finalization,

those activities may also be continued. For example,
suppose an exception is raised during the initialization
of a step, after the step has acquired half of the re-
sources it needs; if the exception can be handled, then
initialization can proceed without loss of the previously
acquired resources. If the intervention is unsuccessful,
the step may be terminated abnormally, in which case
it fails but its results are preserved in case they can be
reused in subsequent iterations of the step. Alterna-
tively, the step may be aborted, in which case it fails
with the discarding of the results. (Propagating an ex-
ception is equivalent to abort.) Thus, there are a variety
of responses that can be made to an exception, the most
appropriate of which will depend on the overall process
and on the particular circumstances in which the excep-
tion occurs.

4.4 Artifact Consistency

BOOD is described in terms of artifacts and activities
with equal status. That is, to fully understand BOOD,
it is necessary both to understand the various design di-
agrams that are the artifacts produced by the process as
well as the activities that need to be performed to cre-
ate and manipulate those diagrams. In this section, we
briefly discuss artifact definition and illustrate the way
in which JIL integrates artifact consistency manage-
ment into the executable aspects of process programs.

4.4.1 Artifact Definition In JIL, artifact definition
and management is done using Pleiades [18], a persis-
tent object management system. Artifacts are decom-
posed into collections of interrelated objects. This de-
composition allows for simple concurrent manipulation
of an artifact by allowing designers to work on non-
intersecting sets of objects. Pleiades also supports the
specification of both inter-artifact and intra-artifact re-
lationships, both of which are useful in ensuring artifact
consistency. For example, when a requirement changes,
these relationships can be used to identify the pieces of
the design that are affected. The potential ripple effect
of the requirements change can be determined by identi-
fying the transitive closure of the relationships between
and within the artifacts emanating from the object cap-
turing the requirement change.

4.4.2 Assessing Milestones The ultimate goal of
BOOD is to create the artifacts that represent a high
quality design for the given requirements. Each step in
BOOD identifies milestones. Reaching a milestone is in-
dicative of successful completion of the step to which the
milestone is attached. For a process to describe BOOD
accurately, it is necessary to evaluate the artifacts to
determine if the milestones have been reached.

JIL allows a programmer to attach postconditions to
steps. These postconditions can be used to determine
if the milestones have been reached. Upon completion

Submitted to ICSE 98

of a step, all the postconditions for the step are eval-
uated. If a postcondition fails, an exception is raised
that can be dealt with in an exception handler. A com-
mon action to take on failure of a postcondition is to
repeat some or all of the activities in the step to correct
for the failed postcondition. In the context of design,
many postconditions require human evaluation and ex-
ception handlers for failed postconditions require human
action. For example, a postcondition for the class and
object identification step of BOOD is that the classes
and objects are consistently named. Evaluating naming
consistency is not likely to be something that can be
automated in any generally meaningful way and thus
should be the responsibility of a human reviewer to ver-
ify. The action to correct for naming inconsistencies in-
volves renaming the inappropriately-named classes and
objects. A software tool can ensure that the new names
are applied everywhere they occur in the design, but
a human must be involved in selecting the new names.
JIL quite comfortably supports the specification of these
sorts of interactions between tools and humans.

4.4.83 Artifact Flow Artifacts created in one design
step are typically required as input for other design
steps. JIL explicitly represents the artifact flow between
steps using parameters. Artifact flow often implicitly
constrains the order in which steps can be executed and
thus the amount of concurrency that is possible between
steps. For example, Step 2 of BOOD is to define the
semantics of classes and objects. Obviously, a class’s
semantics cannot be identified until the class itself has
been identified in Step 1. Thus, the output of Step 1
becomes the input of Step 2. Note, however, that a cer-
tain amount of concurrency is possible, even expected,
between these two steps. In particular, it is not neces-
sary to identify all classes before defining the semantics
of some of them. As a result, Step 2 can be started as
soon as some classes or objects have been identified, but
no sooner.

JIL provides several ways of specifying concurrency be-
tween steps that would allow the semantics of some
classes to be defined while other classes are still being
defined. Premature execution of Step 2 is prevented by
attaching a precondition to the step requiring that the
data dictionary must contain at least one class or ob-
ject whose semantics have not yet been defined. Failure
of the precondition raises an exception whose handler
delays initiation until the precondition becomes true, as
shown below. In this manner, the control flow through
the design process can be constrained by the availability
of the appropriate artifacts.

HANDLE VIOLATION OF
Some_Undefined_Classes_0Or_0Objects
AS PRECONDITION BY
AWAIT EVENT
Artifact_Created(Class) or
Artifact_Created(Object);
CONTINUE;
END IF;
END HANDLE;

4.4.4 Optimistic Design ~ The evaluation of precondi-
tions and postconditions for design processes may be
complex and prone to delays due to the need for human
evaluation or conflicts over access to other required re-
sources. These problems may be especially severe for
processes that are long-lived and highly concurrent, as
design processes may be. In the worst case, it may be
impossible to evaluate preconditions and postconditions
in a timely manner, leading to a state of indeterminacy,
introducing potentially unnecessary delays in the design
process. For example, there is often a delay between
the completion of a portion of a design and the for-
mal review meeting to evaluate the design so that the
reviewers have adequate time to become familiar with
the proposed design. If a project is under an ambitious
schedule, it might be unreasonable to force the devel-
oper to wait until the review is complete before con-
tinuing with more detailed design or implementation.
Instead, a manager might want to trust the designer to
identify the least risky aspects of the design and con-
tinue their development prior to completion of the re-
view.

To help address these problems, the JIL execution
model includes the notions of consistency variances and
at-risk execution. A consistency variance is a variance
from the usual enforcement of preconditions and post-
conditions. In cases where a condition cannot be evalu-
ated due to conflicts over access to needed resources, a
step may be granted a variance from enforcement, of the
condition, that is, the step may begin to execute before
its preconditions are verified, or it may complete before
its postconditions are verified. This entails subsequent
at-risk execution, since the step may later be aborted,
or a significant amount of rework may be required if
the condition is found to be violated. The benefits of
increased concurrency and efficiency may outweigh the
risks of a possible violation, however. We do not expect
that variances will be granted automatically in general.
Rather, we see this as another opportunity for people
to be involved, this time in the role of process managers
guiding process interpretation.

5 Evaluation

In this project, we evaluated the adequacy of JIL for
the specification of the BOOD process. The two ar-

Submitted to ICSE 98

eas of need that we had identified as being of primary
interest were precision and clarity of the process specifi-
cation. Two additional goals were process flexibility and
the ability to accommodate people in the process. The
ability to support clarity and foster ease of use through
visualizations of process programs was a further goal.

5.1 Precision and Clarity

We believe that the foregoing section strongly supports
our hypothesis that the sorts of linguistic features con-
tained in JIL are quite effective in enabling the precise
specification of BOOD processes. We have indicated
numerous ways in which process details are needed in
order to distinguish among several alternative ways of
performing BOOD. These distinctions seem essential if
we are to be able to provide strong computer support for
execution of these processes, and to be able to reason
definitively about various important aspects of them.
We have demonstrated that JIL generally has specific
features that enable us to make these very precise (and
crucial) distinctions.

We also believe that JIL supports clarity in the process
descriptions we have developed and examined. One key
way in which clarity is achieved is through the use of
higher-level, process specific abstractions. While the
number of constructs in JIL may be greater than in a
lean programming language, the constructs have now
been shown to be present to meet demonstrated needs.
We have sought to add to the language constructs that
succeed in reducing the size of process programs by ex-
pressing needed higher level semantic features in a di-
rect and terse fashion. In addition we have striven to
make these features cleanly orthogonal, and to assure
that they have clear semantics.

Our work has also indicated some areas in which JIL
did not readily enable us to be sufficiently clear or pre-
cise. In particular, while the step composition operators
were useful, it would be beneficial to extend this set to
include some simple looping constructs and to better
integrate the step composition operators into the pro-
cedural portions of the step descriptions. In addition,
the resource specification capabilities in JIL were found
to be less precise than might be desired. These find-
ings have helped us to pinpoint areas in which further
development of JIL should be focussed.

5.2 Flexibility and Accommodation of People

The goals of process flexibility and accommodation of
people in the process are closely related in that flexibil-
ity is partly necessary for and partly exercised by people
in the process. Flexibility was achieved in a number of
ways. Some of the step composition operators (e.g.,
UNORDERED and PARALLEL) contain an aspect of non-
determinism where human decision making can occur.

Through the integration of resource management into
process execution, process programs can be decoupled
from bindings to specific agents and resources. The use
of preconditions and postconditions allows the execu-
tion of process steps to be controlled according to dy-
namically changing product state. Humans also serve as
agents for step execution, carrying out step activities,
reacting to process events, and handling process excep-
tions. These features proved quite useful in specifying
alternative BOOD processes.

We also noted some limitations in these areas. Experi-
mentation is needed with alternative strategies for mak-
ing nondeterministic control decisions. Some linguistic
means of specifying how those decisions should be made
would also be helpful, especially for explicitly delegating
control decisions to human agents.

5.3 Visual JIL

Another way in which the need for clarity is being ad-
dressed is through the use of visualization. A key aspect
of the JIL development project has been the concur-
rent development of Visual-JIL. Visual-JIL is an inter-
active graphical system that supports the development
of process programs written in Little-JIL, a subset of JIL
that has been carefully selected for clear visualizability
and significant effect. Visual-JIL emphasizes features
related to agent coordination and concentrates on the
simpler, yet still flexible, process control structures. It is
hoped that the visual representation, coupled with the
relatively simple but useful subset semantics, will foster
the adoption of process programming by making it easy
to write process programs that are still clear and pre-
cise. Indeed, our experience with the BOOD process is
based on programming in both full JIL and in Little-JIL
using the Visual-JIL system. The precise specification
of many aspects of these examples was possible through
the use of Visual-JIL, which offers distinct visualization
and clarity advantages in those areas of the language it
supports.

We believe that JIL, Visual-JIL, and Julia are exam-
ples of a language and system that balance the level of
expressive power needed to support sufficient precision
with necessary clarity and usability. We believe this
claim is supported by the existence of BOOD process
programs that are precise, expressive, and clear.

6 Status and Future Work

As noted earlier in this paper, the development of JIL,
Visual-JIL, and Julia are ongoing activities. Evaluation
activities such as the one described here are an integral
part of the development of these languages and system.
From these evaluations we are gaining key insights into
the strengths and weaknesses of these languages and
systems. This particular evaluation has reinforced our

Submitted to ICSE 98

belief that JIL and Visual-JIL are likely to be broadly
useful in continuing efforts to support process execution
and powerful reasoning about real processes. Thus, we
expect to begin releasing JIL and Visual-JIL specifica-
tions and prototypes in the coming year or so.

Simultaneously, evaluation activities such as the one de-
scribed here will continue. For example, we are extend-
ing the BOOD process program described here to sup-
port collaborative design involving multiple designers
sharing the same set of artifacts and resources. In do-
ing this, we expect to evaluate further the effectiveness
of JIL’s support for resource, agenda, and artifact man-
agement and to use this experience to help us refine the
abstractions required during these management activi-
ties.

We are also planning to use JIL and Visual-JIL to de-
velop and evaluate process programs for such other soft-
ware engineering activities as regression testing, con-
figuration management, and incremental dataflow anal-
ysis. We expect to continue to learn about JIL and
Visual-JIL strengths and weaknesses from these activi-
ties. Based on these experiences, we expect to add new
features for which there is a demonstrable need, delete
existing features for which the need seems slight, and
thereby continue to enhance the clarity and precision
of the language. Increasingly, moreover, we also expect
that the process programs themselves will become in-
creasingly interesting, useful, and valuable artifacts.

Acknowledgments Work on JIL, Julia, and JIL pro-
cess programming has been performed by many peo-
ple, whose contributions we gratefully acknowledge.
Alexander Wise is the primary architect and developer
of Visual-JIL. Eric McCall is the designer and devel-
oper of the agenda management system and a con-
tributor to Visual-JIL. Rodion Podorozhny is devel-
oping the resource management system and has con-
tributed JIL process programs. Jin Huang and Arvind
Nithrakashyap contributed to the implementation of a
Booch-product object-management system in Pleiades.
Peri Tarr provided Pleiades support and developed the
initial JIL parser. Additionally, Chris Prosser, Dan
Rubenstein, and Todd Wright have all contributed JIL
process programs, and we have benefited from the com-
ments of numerous colleagues at the University of Mas-
sachusetts and elsewhere.

REFERENCES

[1] Sergio Bandinelli, Alfonso Fuggetta, and San-
dro Grigolli. Process modeling in-the-large with
SLANG. In Proc. of the Second International Con-
ference on the Software Process, pages 75-83. IEEE
Computer Society Press, 1993.

10

2]

3]

[6]

[7]

[10]

[11]

[12]

Gregory A. Bolcer and Richard N. Taylor. Endeav-
ors: A process system integration infrastructure. In
Proc. of the Fourth International Conference on the
Software Process, pages 76 — 85. IEEE Computer
Society Press, December 1996.

G. Booch. Object-Oriented Analysis and Design
with Applications. Benjamin Cummings, Redwood
City, CA, second edition edition, 1994.

Don Cohen. AP5 Manual. Univ. of Southern Cali-
fornia, Information Sciences Institute, March 1988.

D. Coleman, P. Arnold, S. Bodoff, C. Dollin,
H. Gilchrist, F. Hayes, and P. Jeremaes. Object-
Oriented Development: The FUSION Method.
Prentice-Hall, Englewood Cliffs, NJ, 1994.

Christer Fernstrom. PROCESS WEAVER: Adding
process support to UNIX. In Proc. of the Second
International Conference on the Software Process,
pages 12 — 26, 1993.

I. Jacobson, M. Christerson, P. Jonsson, and
G. Overgaard. Object-Oriented Software Engineer-
ing: A Use Case Driven Approach. ACM Press,
New York, 1992.

G. Junkermann, B. Peuschel, W. Schéfer, and
S Wolf. MERLIN: Supporting cooperation in soft-
ware development through a knowledge-based en-
vironment. In A. Finkelstein, J. Kramer, and
B. Nuseibeh, editors, Software Process Modelling
and Technology, pages 103 — 129. John Wiley &
Sons Inc., 1994.

Gail E. Kaiser, Naser S. Barghouti, and Michael H.
Sokolsky. Experience with process modeling in the
MARVEL software development environment kernel.
In Bruce Shriver, editor, 23rd Annual Hawaii Inter-

national Conference on System Sciences, volume 11,
pages 131-140, Kona HI, January 1990.

Takuya Katayama. A hierarchical and functional
software process description and its enaction. In
Proc. of the 11th International Conference on Soft-
ware Engineering, pages 343 — 353. [EEE Com-
puter Society Press, 1989.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,
and W. Lorensen. Object-Oriented Modeling and
Design. Prentice-Hall, Englewood Cliffs, NJ, 1991.

Xiping Song and Leon J. Osterweil. Engineering
software design processes to guide process execu-
tion. In Proc. of the Third International Conference
on the Software Process, pages 135 — 152, 1994.

Submitted to ICSE 98

[13]

[19]

Xiping Song and Leon J. Osterweil. Experience
with an approach to comparing software design
methodologies. IEEFE Trans. on Software Engineer-
ing, 20(5):364-384, May 1994.

Stanley M. Sutton, Jr., Dennis Heimbigner, and
Leon J. Osterweil. APPL/A: A language for
software-process programming. ACM Trans. on
Software Engineering and Methodology, 4(3):221—
286, July 1995.

Stanley M. Sutton, Jr. and Leon J. Osterweil.
The design of a next-generation process language.
Technical Report CMPSCI Technical Report 96-
30, University of Massachusetts at Ambherst,
Computer Science Department, Amherst, Mas-
sachusetts 01003, May 1996. revised January, 1997.

Stanley M. Sutton, Jr. and Leon J. Osterweil. The
design of a next-generation process language. In
Proceedings of the Joint 6th European Software En-
gineering Conference and the 5th ACM SIGSOFT
Symposium on the Foundations of Software Engi-
neering. Springer-Verlag, 1997. To appear.

Stanley M. Sutton, Jr. and Leon J. Osterweil. Pro-
gramming parallel workflows in JIL. In Proceedings
of the 9th International Conference on Parallel and
Distributed Computing and Systems, 1997. To ap-
pear.

Peri L. Tarr and Lori A. Clarke. PLEIADES: An
Object Management System for Software Engineer-
ing Environments. In Proceedings of the First ACM
SIGSOFT Symposium on the Foundations of Soft-
ware Engineering, pages 56-70. IEEE Computer
Society Press, December 1993.

R. Wirfs-Brock, B. Wilkerson, and L. Weiner. De-
signing Object-Oriented Software. Prentice-Hall,
Englewood Cliffs, NJ, 1990.

11

