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1 Motivation

Class evolution is a normal aspect of themaintenance of object-orientedprograms. While class evolution
is closely related to the schema evolution problems faced by traditional database systems, there are two
fundamental differences important for this discussion. First, the fact that class definitions are frequently
shared directly in multiple applications rather than shared via “cut-and-paste” as in relational database
schemas implies that modifying a class may impact many programs, and the class maintainer may not even
be aware of all affected programs. This difference motivates the need for upward compatibility so that
programs using a modified class can continue to do so unaffected by the changes.

Second, the fact that classes are more loosely connected than the relations in a relational database schema
offers hope that we can address evolution in a more modular manner than with traditional databases. Many
evolution systems take this to an extreme and treat evolution as a problem only involving individual classes,
However, a maintenance activity might simultaneously affect multiple classes and require a more unified
solution than is possible when considering each class’s evolution in isolation.

In this paper, we discuss our approach to upward compatibility and changes involving multiple classes.
Before doing so, we identify the basic tenets upon which our ideas of class evolution are based. These tenets
are not meant as absolutes, but they certainly bias the research directions that we have taken. The basic
tenets are:

Newer is better.

Newer versions generally add functionality and rarely delete any.

The first tenet states our belief that newer versions of classes are generally superior to older versions.
This may include improved functionality, reliability, performance, etc. As a result, when class instances are
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shared by programs developed with multiple versions of a class definition, we are biased towards converting
class instances to the version used by newer versions of classes.

The second tenet states our belief that evolution much more frequently involves extending the func-
tionality of a class rather than reducing its functionality. Newer versions of classes often include all the
functionality provided by earlier versions. As a result, converting objects to a newer version rarely reduces
their usefulness for old code.

The general approach to class evolution that we propose involves converting objects to a newer version
when new code accesses an old object and screening new objects when accessed by old code.

2 Class Evolution

In this paper, we assume a language that defines classes as consisting of an interface and an implementa-
tion. The interface contains only the signatures of the public methods, both those defined locally and those
inherited from superclasses. The implementation contains the declarations of the class’s instance variables,
the private methods, the bodies of the public methods, and the list of superclasses.

Classes can be organized into two hierarchies: a type hierarchy and a class hierarchy. A type hierarchy
organizes classes according to their interfaces. Class A is a subtype of class B if for every method in B’s
interface there is a method in A’s interface that is a subtype of the method from B using the contravariant
rule of subtyping. The type hierarchy is used to support type checking. It is not necessary to declare the
type hierarchy explicitly since it can be inferred from the class definitions.

A class hierarchy organizes classes according to their implementations and is used to support inheritance.
The class hierarchy is explicitly declared by the programmer by identifying the superclasses for each class.
A subclass inherits the variables and methods defined and inherited by its superclasses. Conflicting names
must be resolved, although the exact method for resolution is irrelevant for this paper. Since the class
hierarchy is used only for inheritance and not type checking, the programmer may override any definition
with any other definition. In particular, there are no typing constraints on overriding, although failure to
follow the contravariant rule when overriding public methods will result in a subclass that is not a subtype
of one or more of its superclasses.

We classify class changes into the following three categories:

Interface changes

Implementation changes

Class identity changes

Interface changes are those changes that involve modifications to the public portion of a class. Changes
may involve adding a method, changing the name of a method, modifying a parameter list, or occasionally,
deleting a method. These changes may occur either locally or as a result of modifying the class hierarchy.

Implementation changes are changes to the private part of a class. They include changing the instance
variables, modifying the body of a method, or modifying the signature of a private method. These changes
may occur either locally or as a result of modifying the class hierarchy.

Class identity changes involve creating, deleting, or renaming an individual class, or reorganizing classes
in such a way that there is no single unique new class corresponding to each old class.
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3 Type Conformance

Type conformance determines how a class may change from one version to the next and still be managed
by a system’s support for class evolution. One solution to type conformance requires that new versions of
classes be upwardly compatible with the versions they replace. In an object-oriented setting, this translates
into creating new versions that are subtypes of the versions they replace. The reasoning behind this is simple:
any objects created with the new version of the class can be manipulated by programs expecting the old
version. New programs, which can be aware of the old versions, can use objects created with those old
versions by inserting a screening operation that makes the object appear as if it was created with the new
version of the class. Many systems do not strictly follow this subtyping rule, however, and allow variables
to be deleted during evolution. Since deletion violates the subtyping rule, changes involving deletion are not
upwardly compatible. Therefore, changes involving deletion also require a screening operation to allow old
code to work with new objects or else require all code using a class to be updated when the class’s definition
changes.

Another limitation of existing systems is that the type conformance they support typically requires that
each old class have a single corresponding new class. Type conformance therefore restricts a programmer to
making changes local to an individual class. Most systems further restrict the kinds of changes that can be
made. Also, type conformance typically relies heavily upon the class’s implementation, not just its interface.

For example, here are the limitations imposed by some systems on changing the type of an instance
variable. In Orion [BKKK87] it is possible to change the type of an instance variable to be a supertype of
its old type, but not a subtype or unrelated type. In GemStone [PS87], it is possible to change the type of
an instance variable arbitrarily. However, if an instance variable is subtyped, any values that are not in the
subtype are deleted. Similarly, if an instance variable is changed to an arbitrary type, no attempt is made
to preserve the old value or transform it into an acceptable value. O [Bar91] goes further than either of
the previous systems by allowing the programmer to define a transformation function to call when the type
of an instance variable is changed to something other than a supertype. However, O still deals only with
changes local to an individual class and bases its conformance rules on a class’s implementation.

In this paper we discuss twoways of generalizing the notionof type conformance to providemore flexible
evolution. First, we discuss type conformance based on class interfaces rather than implementations. Next
we discuss a more general notion of type conformance that allows a single class to be replaced withmultiple
classes, or several classes to be combined into one.

3.1 Interface-Based Type Conformance

If classes interact through well-defined interfaces, then it should be straightforward to support evolution
when a class’s implementation changes, but its interface remains the same. This requires that we be able to
select a method to execute not just based upon the class of the object to which it was sent, but also based
upon the version of the class used by the object. We could accomplish this either by relinking all programs
using a modified class to include the code for all versions, or by storing the object code associated with the
methods of all versions of a class in the object base to be dynamically linked in when necessary.

Furthermore, class changes that result in upwardly compatible interfaces can also be supported trans-
parently. Upward compatibility for a class interface requires that new versions of a class be subtypes of old
versions. Since the only things visible in the interface are the signatures of the public methods, we require
that each method in the old version have a corresponding method in the new version that is a subtype using
the contravariant subtyping rule. In this way, old code is able to interface with new objects through the
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modified interface. even though the variables and method implementations may have changed arbitrarily.
Of course, if the new implementation modifies the semantics of the methods, the behavior may not be what
the old code is expecting. The only thing that is guaranteed is that the new version is type-safe to use with
old code.

The changes to a class interface that are upwardly compatible are:

Adding a method

Renaming a parameter

Changing the type of a parameter to a supertype

Changing the type of the return value of a method to a subtype

While the ability to arbitrarily change the class’s implementation gives the maintainer a wide latitude in
the kinds of changes that can be made, it is still possible that a maintainer may want to change an interface
so that it is not upwardly-compatible. Such changes involve one of the following:

Deleting a method

Renaming a method

Deleting a parameter

Adding a parameter

Changing the type of a parameter to a subtype or unrelated type

Reordering parameters

Changing the type of the return value of a method to a supertype or unrelated type.

To support non-upwardly compatible interface changes, we introduce the concept of an obsolete interface
and a current interface to the class interface. An obsolete interface adds the necessary methods to make the
new interface upwardly compatible with the previous version. The obsolete interface is only intended for
old code to use. The current interface defines the interface that new code should use.

For example, even though a new version might delete a method, following our belief that functionality
is rarely deleted, the same functionality is probably still available but is accessed in a different way. If this
is true, it would be possible for the maintainer to include the “deleted” method in the obsolete interface and
then implement it in terms of methods in the current interface. In the rare cases where a method is truly
deleted, it would be flagged as such in the obsolete interface and attempts to execute it would result in a
runtime error. If the maintainer wants to continue to support an obsolete method, but requires the use of
private methods to do so, he/she should reconsider whether that functionality is really obsolete.

As a class evolves it collects a series of obsolete interfaces. Once an obsolete interface (and its
implementation) is created, it is never necessary to modify it (except to fix errors). Each obsolete interface
simply provides a screening for objects of the next version to appear as objects of an older version. An
object that is several versions newer than the calling code requires should be passed through the sequence
of screening functions required by each intervening version.

The compiler can ensure that new code only uses the current interface to a class and not obsolete
interfaces. A more interesting situation arises when an existing class that uses a modified class is updated.
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We could imagine a situation in which the modified class is “grandfathered” and allowed to continue to
use the obsolete interface. However, the programmer should certainly be informed that he/she is using an
obsolete interface, and in particular should be told of methods that are not supported in the obsolete interface.
A better solutionwould be an evolution system that supported the update of the modified code to the current
interface. If the implementation of an obsolete method uses only public methods, all calls to that obsolete
method could be replaced with the implementationsof those obsoletemethods in-line. The evolution support
system should be able to automate the in-lining, although the resulting code might not be optimal. If the
obsolete method uses private methods in its implementation, the maintainer of the client class is burdened
with updating its implementation to correspond to the current interface. Again, we feel this is appropriate
because class evolution should only be applied when a maintainer truly intends to replace a class definition
with a newer one, and should not be used to create a collection of variants of a class.

This approach of maintainingmultiple interfaces to a class is similar to the approach proposed by Skarra
& Zdonik [SZ87, Zdo90] and Clamen[Cla92]. A major difference is that we treat the current version of
a class as special and tend to migrate objects toward the current version. In contrast, Zdonik and Clamen
treat all versions as equally valuable and maintain multiple versions of objects as well as their classes in
order to support evolution. Also, we hide implementation changes behind a class interface, while Skarra &
Zdonik and Clamen provide multiple versions of objects when an implementation changes as well. Obsolete
interfaces are also related to obsolete methods provided by Eiffel [Mey90]. However, in Eiffel, an obsolete
method can always be used, even by new code, although the compiler warns when one is. Eiffel offers no
other versioning support nor any support in replacing uses of obsolete methods.

3.2 Multi-Type Conformance

Obsolete interfaces address the issue of how code written using an old version of a class definition can
operate on objects created with a newer version. We also need to solve the problem of newer code working
on older versions of objects. If the interface is not changed, there is no problem; code written to use a
newer interface is still able to access old objects using the old interface and implementation. However, if
the interface is changed it most likely provides functionality that is not available in the old interface. Code
written with the new interface may try to call this code, which is not provided by the versions used by old
objects. Since we believe that the newer version was created as an improvement over the older version, we
transform the old object to the new version in this case.

We can look at systems such as Orion, GemStone, and O for inspiration on how to support conversions
of old objects to new. However, we find their mechanisms lacking in that they support evolution only in
terms of its effects on individual classes, rather than thinking about evolution in terms of an entire type
system. Also, they focus on the type safety properties of the object base and ignore issues of data integrity
that can occur when changes incorporate new semantics. In this section, we discuss evolution from the point
of view of the implementations since we are interested in addressing the issues of converting old objects to
newer representations as defined by their instance variables. The obsolete interface mechanism can continue
to be used to allow old code to access new versions even when a change affects multiple types.

There are several common type system changes that can affect multiple types. To support evolution
involving these categories of changes, we may need to be able to convert or screen multiple objects in our
object base to make them appear as a single new object of the appropriate version or to allow one old object
to appear as an instance of more than one new class. The problem of converting instances to new versions
is significantly more complicated when multiple types are affected than when one considers only changes
local to individual types. The intent of this section is to point out the necessity for multi-type conformance,
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rather than offer a complete solution.
The multi-type changes discussed here provide examples of reasonable changes that a maintainer might

want to perform, yet are beyond the capabilities of current evolution support. The multi-type changes that
we have identified thus far consist of the following:

Encapsulating part of the functionality of one class to create a new class.

Specializing a class by creating one or more new subclasses.

Moving functionality/variables from one class to another existing class.

Combining some or all of the functionality in two or more classes into a single new class.

Multi-typechanges also raise an issue ofmulti-object conversion. Three situations requiringmulti-object
conversion may arise:

An old object may be replaced with several new objects.

Several old objects may be replaced with one new object.

Several old objects may be replaced with several new objects.

Of these, the last two are the greatest cause for concern. In these cases, conversion requires us to identify a
collection of old objects in order to create the appropriate new object(s). This requires an ability to describe
what those related objects are and to find them when we want to do the conversion. A powerful query
language would simplify these types of conversions.

Encapsulation occurs when a new class is created by dividing the variables (and functionality) of an
existing class into two separate parts. The result is that an old object becomes split into two objects during
conversion, although it is likely that one of the objects will be the value of an instance variable in the other
object. For example, suppose we have the following class:

class BankAccount is
acct type: AccountType;
customer: Name;
customer address: Address;
customer phone: Phone;
amount: Dollars;
...

end class;

This class may include methods to get the customer’s name, address, etc. We might want to reorganize our
classes so that we have a single class of customer informationwith a component for each account rather than
duplicating customer information everywhere.
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class Customer is
customer name: Name;
customer address: Address;
customer phone: Phone;
accounts: list of BankAccount;
...

end class;

class BankAccount is
acct type: AccountType;
the customer: Customer;
amount: Dollars;
...

end class;

To support object conversion, the evolution system must be able to create the necessary customer objects
by extracting information from the BankAccount objects. This should be straightforward. A more difficult
problem is that we want to avoid having duplicate Customer objects for each individual customer. This is
an example of a several-several mapping. When we convert a single BankAccount object, we actually need
to convert all bank accounts for that customer at the same time in order to ensure the integrity of our object
base. One can imagine other encapsulation examples in which the transformation is 1-several, so that it
would be unnecessary to test for duplicates.

An interesting observation about this example is that it demonstrates that adding a new class is not
necessarily trivial with regard to the evolution support required. Of course, the addition of the class is not the
source of the problem, but rather the use of this new class in a new version of an existing class is. However,
as we noted earlier, the most common solutions restrict changing variable types to supertypes or subtypes of
the old type, and would prevent a maintainer from implementing this change altogether.

Specializing occurs when an old class is replaced by several new classes. For example, a class might be
replaced by several more specialized subclasses. Consider how the BankAccount class could be modified
and replaced by more specialized classes:

class BankAccount is
the customer: Customer;
amount: Dollars;
...

end class;

class SavingsAccount inherits from BankAccount is
...

end class;

class CheckingAccount inherits from BankAccount is
...

end class;
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In this case we might want to replace all old instances of BankAccount with either an instance of SavingsAc-
count or CheckingAccount. In other cases, we might want to allow some instances to remain instances of
the superclass. In either case, we want to be able to determine which old bank account instances correspond
to which of the new subtypes in order to maximize the usefulness of those account instances by new code
intended for the subtypes. This introduces the need for our conversion functions to perform conditional
conversion. Note that the new classes would probably not be subtypes of the old class. The old class would
have included a method to determine what type of account it was, while this is implicit in the type of the
new classes. The new classes therefore need trivial functions in their obsolete interfaces to return their type.

A moving change occurs when some functionality/attributes are moved from one class to another. Most
commonly this movement would occur between two classes where one class is used as the type of an instance
variable in the other. This is another example of a several-several mapping. To support object conversion to
the new version, the evolution system would need to be able to identify which pairs of objects were affected
by such a change so that the appropriate variable values could be moved between them. Unlike the previous
example, this change is inherently several-several.

A combining change occurs when the new class merges functionality previously found in multiple
classes. For example, suppose a university department has an object base that contains information about
the members of the department. The Member class might have subclasses consisting of Employee and
Student. Since some students might be employed by the department there may be two objects representing
an individual. A reorganization of this hierarchy could include creating a StudentEmployee class to hold
the information pertaining to those people. In this case, the new class would probably be a subtype of the
two existing classes, making the upward compatibility problem trivial. This is an example of a several-1
mapping. In addition to identifying which objects in an existing object base should be paired together to
form instances of this new object type as we did earlier, we also face the problem of updating references
to the two old objects so that they point to this new object. We want the new object to be reachable by
any reference to either old object, effectively giving the new object two object identifiers. Most existing
systems would only introduce the new class, but would not transform any existing instances. While this is a
type-safe solution, it violates the integrity of the object base because it does not model the real-world objects
as accurately as it should.

In related work, Casais [Cas90] describes algorithms to analyze a class hierarchy and reorganize it to
make the relationships between classes clearer. These types of reorganization simultaneously affect multiple
classes. Since these changes are driven by an algorithm, it should be easier for an evolution system to
understand their intent than when similar changes are performed by a maintainer directly. As a result, it
should be possible to automate updating the objects appropriately when the class changes themselves are
automated, although Casais does not address this issue.

OTGen [LH90] provides support for automatically generating transformation functions by observing the
changes that a maintainer makes to a set of type definitions. While it does not automate transformations
involving multiple changes, it provides a declarative language that makes it simple for a maintainer to
specifymany types of transformation functions and thus provides a framework to supportmulti-typechanges.
However, even with this intervention from the maintainer, OTGen is still limited in its support for multi-type
changes since it lacks a query facility and does not support objects with multiple identities.

4 Conclusions

Most existing support for class evolution is extremely limited. First, most systems focus on the changes
to the representations of classes specified by their instance variables, rather than on the interfaces to the
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classes. As a result, many changes that could be neatly hidden behind a clean interface become directly
visible and are prevented by the type conformance rules of the evolution system. Second, the changes that
most systems support are rather narrow in their focus and only treat classes in isolation, rather than dealing
with type systems as a whole. The result limits the usefulness of the evolution support by either prohibiting
useful changes or supporting them at the type level, but not the instance level.

This paper offers a solution to the first problem by outlining an approach in which a language supports
evolution via obsolete interfaces to classes. This approach offers the maintainer a great deal of flexibility,
but still requires him/her to face the issues of upward compatibility and to explicitly think about the effects
of evolution when modifying a class.

The second problemof supportingmulti-typechanges requiresmore support from the object base system.
First, support for multi-type changes requires a powerful query facility to allow collections of objects to
be located that must be converted simultaneously. Second, it requires the ability for conversion functions
to make transformations conditional on the state of an individual object to support specialization. Third,
it requires an object to be able to take on two object identifiers to allow old objects to be merged. Also,
since most of these changes require knowledge of the semantics of the types and their relationships, they
most likely require more work from the maintainer to update the objects appropriately. However, evolution
systems could provide a framework that a maintainer would be able to use to implement these evolution
functions.
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