
Coordinating Agent Activities in
Knowledge Discovery Processes

David Jensen, Yuliu Dong, Barbara Staudt Lerner, Eric K. McCall,
Leon J. Osterweil, Stanley M. Sutton, Jr., and Alexander Wise

Department of Computer Science
University of Massachusetts Amherst

Amherst, MA 01003 USA
~ensen~yldong~lerner/mccall~ljo~sutton~wise}@cs.umass.edu

ABSTRACT
Knowledge discovery in databases (KDD) is an increasingly
widespread activity. KDD processes may entail the use of a
large number of data manipulation and analysis techniques,
and new techniques are being developed on an ongoing
basis. A challenge for the effective use of KDD is
coordinating the use of these techniques, which may be
highly specialized, conditional and contingent.
Additionally, the understanding and validity of KDD
results can depend critically on the processes by which they
were derived. We propose to use process programming to
address the coordination of agents in the use of KDD
techniques. We illustrate this approach using the process
language LittleGIL to program a representative bivariate
regression process. With Little-JIL programs we can clearly
capture the coordination of KDD activities, including
control flow, pm- and post-requisites, exception handling,
and resource usage.
Keywords:
Knowledge discovery process, Knowledge representation,
Agent coordination, Agenda management, Process
programming
1. INTRODUCTION
KDD-knowledge discovery in databases-has become a
widespread activity undertaken by an increasing number
and variety of industrial, governmental, and research
organizations. KDD is used to address diverse and oflen
unprecedented questions on issues ranging f?om marketing,
to f&d detection, to Web analysis, to command and
control. To support these diverse needs, researchers have
devised scores of techniques for data preparation,
transformation, mining, and postprocessing. Moreover,
dozens of new techniques are added each year. While the
growing collection of techniques and tools helps address
the growing set of needs, the size and rapid growth of the
collection is becoming something of a problem itself.
Many of the techniques will yield incorrect results unless
they are used correctly with other techniques. In addition,

Permission to make digital or hard copies of all or part of this work for
PerSOnat Or ClaSSrOOm use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
TO COPY otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
WACC ‘99 Z/99 San Francisco, CA, USA
0 1999 ACM l-58113-070-8/99/0002...$5.00

KDD is often done by teams whose activities must be
correctly coordinated.
Thus, one of the chief challenges facing an organization that
wishes to conduct KDD is in assuring that data analysis
and processing techniques are used appropriately and
correctly and that the activities of teams assembled to do
KDD are properly controlled and coordinated. The
applicability of techniques can depend on a number d
factors, including the question to be addressed, the
characteristics of the data being studied, and the history CE
processing of those data. This problem can be
compounded if the organization lacks experience with the
(possibly new) techniques, or if individual analysts on a
team d&r with respect to their general level of expertise,
specialized knowledge about the data (e.g., biases and
assumptions), or familiarity with particular analysis
techniques (pitfalls and tricks). The problem can be further
exacerbated if multiple analysts must be orchestrated in a
KDD effort, or if the resources required to support the KDD
effort are scarce or subject to competitive access.
We view these problems as issues of coordination, with the
general goal being to assure that the right team member
applies the right technique to the right data at the right
time. Similar problems of coordination come up in
software development, for example, in the application CE
software tools to &ware artifacts, the assignment d
developers to development tasks, and the organization cf
tasks in the execution of software methods. We have 8
applied process programming to solve coordination
problems in software development [17, 181, and we believe
that process programming is also suited to representing and
supporting coordination in KDD processes. The
applicability of approaches based on software process
programming is further suggested by other similarities
between KDD processes and software processes. For
example, both sorts of problems entail the involvement CE
both human and automated agents, the combination CE
algorithmic and non-algorithmic techniques, the reliance on
external resources, and the need to react to contingencies
and handle exceptions. Additionally, issues of process are
important in understanding and assuring the validity d
KDD results.
In this paper we argue that a process orientation is
important for KDD and that process programming is an
appropriate technique for effecting good coordination in the

137

use of KDD techniques. We support this argument ‘with
examples programmed in Little-EL, a process language that
emphasizes coordination of activities, agents, and the use d
resources and artifacts. We believe that Little-IIL provides
a basis for orchestrating coordination that assures
correctness and consistency in the specification and
execution of KDD processes, and assures that agents will
have the ability to communicate, analyze, and generally
reason about the coordination of KDD techniques.
2. KDD PROCESSES
A process can be thought of as a multi-step plan fnr
completing a given task. A process specification defines a
class of process instances. Each instance conforms to the
specification, but carries out its work in ways that ate
molded by the mix of agents and data that are available
when the process is executed. Instances differ from each
other in ways that include the selection of agents that
execute particular steps, the order in which steps ate
executed, and the choice of which substeps are used to
complete a given step.
For example, a single KDD process specification tbr
bivariate regression might allow choice among multiple
methods for handling outliers (e.g., manual removal,
automatic removal, non-removal), for constructing a
regression model (simple least-squares regression, locally-
weighted regression, and three group resistant line), and for
estimating statistical significance (parametric estimates,
randomization tests). Naively assuming no interstep
constraints and only these three steps, this very simple
process can be instantiated in 18 different ways - a
potentially confusing number for an unaided user.
Some of these possible configurations of process steps are
clearly more desirable and effective than others in di&rent
situations. Thus researchers and practitioners have begun
to provide this sort of guidance. Presently this takes the
form of technical papers that specirjl desirable processes in
informal ways. We believe that there is considerable value
in augmenting these tiormal descriptions with the more
precise, complete, and formal specifications that ate
achievable through process programming. Capturing and
representing processes precisely, completely, and clearly is
notoriously difficult, but our preliminary work indicates
that caremlly designed process specification languages can
greatly facilitate this task.
2.1 Processes are Particularly Important to

KDD
Explicit representation of processes is particularly important
in KDD. First, effective KDD requires managing
dependencies between steps. Some steps may require,
disallow, or enable other steps. For example, using most
neural network training algorithms requires a preceding step
to recode missing values. Non-parametric regression
techniques disallow any subsequent step to construct
parametric confidence intervals. Constructing a decision
tree enables a Uure step of pruning that tree. Explicit
representations of these dependencies can assure that they
are appropriately handled.

Second, the details of processes are essential to determining
the statistical validity of inductive inferences. One example
of this is the well-known error of testing on training data
[24]. KDD processes that do not enforce separation
between training and testing data (e.g., through simple
disjoint sets or cross-validation) will produce biased
estimates of model accuracy. The underlying cause of this
phenomenon - referred to as “multiple comparisons” in
statistics - has fhr more general effects. It has been
causally linked to several pathologies of data mining
algorithms, including attribute selection errors, overfitting,
and oversearching [143 and pathological growth in the size
of decision trees [151. It has also been causally linked to
errors in evaluating several types of modeling algorithms
[8, 11, 121. KDD systems that employ multiple analysts
distributed in time and space are particularly susceptible to
pathologies stemming fhnn multiple comparisons [16].
Explicit representation of KDD processes supports analyses
that can determine when these pathologies can and cannot
occur. In addition, the ability to reinvoke an identical
process is a necessary prerequisite to solutions such as
randomization tests, cross-validation, and bootstrap
estimates [20]. Explicit representation of processes
provides a vehicle for assuring that reinvocations are indeed
identical.
Third, process details are vital to establishing the validity
of KDD results in more general ways. The literature d
KDD, statistics, and machine learning is filled with
discoveries of implicit assumptions underlying particular
techniques. In most cases, the only way to verify whether
these assumptions are met is to examine the process used
to apply a particular technique. Only by knowing the
process used to derive a result can potential errors be traced
back to their source. Explicit KDD process descriptions
capture these details.
Fourth, explicit representation of KDD processes can help
balance multiple perfomumce goals. Several approaches to
a given analysis task may produce results of di&ring
statistical validity, comprehensibility, and ultimate utility.
In addition, those techniques may require di&ent amounts
of computation eflbrt and human attention. By explicitly
representing these characteristics as part of the specification
of individual steps, the process specification can be created
that meets particular objectives (e.g., “give me a fast
approximate result” or “give me a highly accurate result,
but take all night if you need it”).
2.2 Combinlng Human Analysts and Automated

Agents
Research on KDD processes represents a return to one of the
central issues of early work in KDD: how best to combine
the goals and expertise of human users with powerful
automated data analysis tools. While this topic was
identified as a central one by early work in the field (e.g.,
[9]), it can be overlooked in our rush to develop more
sophisticated automated techniques. Recent work has
returned to this theme, including general descriptions CE
KDD processes (e.g., [7]), analysis and integration of steps
[6, 261, formulation of exploratory data analysis as an AI
planning activity [21], and a nascent industry effort to

138

Bivariate regression An outlier

I ,
!

Figure 1: Simple bivariate regression and two common problems

formulate standard KDD processes (CRISP-DM (see
http://www.ncr.dk/CRISP/)). More broadly, we believe
that the effective integration of the work of human and
automated agents is a problem that is at the core of a
growing number of critical problems. We believe that we
can advance work on this problem by studying it in the
more specific context of mixed-agent coordination in KDD
process specification.
One important note: our work explores how to coordinate
the activities of multiple KDD agents, be they automated or
human. Our work does not concern programming
individual automated agents for such tasks as training a
neural network or calculating a &i-square statistic. These
tasks are best done using conventional programming
languages and software engineering techniques. Our work
also does not attempt to tell human analysts how to do
their job. Human analysts have knowledge and expertise
that is essential to the KDD process. Instead, we axe
exploring flexible languages that can be used to coordinate
the actions of experienced human analysts with those d
automated agents and to build processes that enable less
experienced analysts to achieve high-quality results. The
next section provides an extended example of one such
language.
3. AN EXAMPLE: BIVARIATE REGRESSION
In this section we present an example of a KDD process t?x
bivariate regression. Regression appears to be a relatively
simple process, but it is an appropriate example
nevertheless. First, it is a common data analysis activity,
regression tools are included in several KDD workbenches,
and it is a basic task in deployed KDD applications.
Second, the process is not actually as simple as it may
appear. It involves a combination of human and automated
agents, it may draw on a variety of analytical techniques,
the use of these techniques may be conditional and
contingent, interdependencies exist between certain
techniques, and the whole process may entail sequential,
parallel, alternative, and recursive activities. Thus,
although bivariate regression is a relatively “small” process,
it still suffers many of the coordination problems that
process programming is intended to address.

The basic bivariate regression problem can be described
simply (see Figure la). We have a continuously-valued
variable X (e.g., advertising spending), and we wish to
determine whether it can help us predict another
continuously-valued variable Y (e.g., net sales). To assess
this relationship between X and Y, we have a data sample
of N (x, y) tuples.
In this section, we present a process that coordinates agents
and techniques in the performance of bivariate regression.
We begin with basic linear regression, and then expand the
example to incorporate further functionality in the form CE
non-linear regression and accommodation cf
inhomogeneous data sets (i.e., data reflecting two or more
independent phenomena). The process is defined using the
Little-JIL process language [25], which is described with
reference to the examples.
This process should not be taken as a complete or
comprehensive specification. It contains both intentional
and unintentional simplifications. That said, we believe
that it illustrates many of the necessary features of a more
complete specification, and that the Little-JIL language
could be used to represent many of the necessary details in
a more complete specification.
3.1 Linear Regression
The most common approach to the task of bivariate
regression is linear regression. Linear regression constructs
a model of the form y = 131x + Ro, and allows easy
assessment of the statistical significance of the slope Dr.
We can conclude that X and Y are dependent if we can
reject the null hypothesis that l3r is zero with high
confidence.
Least squares regression (LSR) is the most commonly used
form of linear regression. The advantages of LSR include
relatively high statistical power and computational
efficiency. However, LSR’s desirable characteristics rest on
several assumptions, including homostirticity (the
variance of Y is independent of X) and the absence d
outliers- (x, y) tuples that lie far from all other points.
Outhers often represent errors or highly unusual conditions
that produce extreme values.

139

0 agent
x

A V Randomization TestA

- M BB

Figure 1: LittIe-JIL specification for linear regression
Consider the assumption about outliers in more detail.
Outliers strongly affect LSR models-a single outlier can
sharply shift an LSR model, causing it to accurately predict
neither the outlier, nor the other data points (Figure lb).
An alternative modeling technique -three group regression
(TGR) [5]-is robust to the presence of outliers. TGR
divides the range of X into three groups with equal
numbers of points, finds the median X and Y value of each
group, and constructs a line from those three points.
Because the median is a measure of central tendency that is
resistant to outliers, TGR is much less strongly a&&d by
outliers than LSR.
TGR addresses the problem of outliers, but the parametric
significance test of f.3, used for LSR does not apply to TGR.
Instead, a computationally-intensive-technique - random-
ization test [1, 4]- should be used to test significance ti
Ill, the slope of the line built with TGR. Incidentally, a
randomization test can also be used for LSR (although, due
to its computational cost, we chose to exclude this h
our example process).
How the varied activities of linear regression should be
coordinated, in light of the relevant dependencies,
conditions, alternatives, and contingencies, is precisely
what a cogent process definition should make clear. Such
process definitions require a process language that enables
coordination semantics to be expressed clearly and
concisely, that allows rigor and flexibility to be combined
as appropriate, and that supports effiive process
enforcement while admitting dynamic adaptation,
3.2 Representing a Linear Regression Process
In this section we illustrate the linear regression process
using the Little-JIL process language. Little-JIL is a visual
language derived f?om a subset of JIL, a process language
originally developed for sofhvare development processes
[22]. Little-JIL focuses on coordiniition of agents in the
pe~%.nmance of process activities in a wide range cf
processes.

TGRTool

Little-JIL represents the activities of a process as steps,
where each step can be decomposed into substeps.
Substeps within a step can be invoked either proactively or
reactively. A step may also have a prerequisite to guard
entry into the step, a postrequisite to guard exit f?om the
step, and exception handlers to handle exceptions thrown
during the step. The requisites and exception handlers in
turn am steps that may also have substeps, etc. In
addition, steps may include resource specifications.
Runtime management of resource allocation provides
another means of dynamically constraining, adapting, and
controlling process execution. Each step also has, as a
distinguished resource, an execution agent, which is
responsible for initiating and carrying out the work of the
step. Execution agents may be human or automated, and
both types may be transparently combined ih a Little-JIL
process. These features and others are illustrated and
discussed below with respect to the examples.
Figure 2 shows a Little-JIL specification of a linear
regression process. Process steps in Little-JIL m
represented visually by a step name surrounded by several
graphical badges that represent aspects of step semantics.
The bar below the step represents control of substeps. The
leftmost element in the control bar is a sequencing badge
that indicates how substeps should be executed. For
example, the Linear Regression step in Figure 2 contains a
circle-with-slash badge that represents a “choice” control
construct; this indicates that Linear Regression is executed
by executing one of the alternatives Least Squares
Regression or Three Group Regression. The agent, an
analyst to whom the step is assigned, makes this choice.
Least Squares Regression and Three Group Regression, in
turn, axe executed by executing a sequence of substeps, as
indicated by the arrow control badge. (Two other proactive
control badges, “try” and “parallel”, are discussed with
respect to later figures.)
The rightmost element of a step control bar represents
exception handlers. Exception handlers may be simple
actions or more complex subprocesses, represented by

140

Dntnsot
/ DataSd

- NnnLinonrRoridunlr

0 agent: NonlinearRegressionTool

Linear hegression

-l\ agent: HumanAnalyst

V Non-Linear Regressionh

atabet, Model, Conti ence intervals

V LOWESS A V Intervals A V Relationship A

- - -

Figure 2: Regression with substeps for linear and non-linear regression
additional substeps. The simple actions include completing
the step, continuing the step, restarting the step, and
rethrowing the exception. In Figure 2, the exception
handler for the Outliers exception (thrown by step
Construct Linear Model) has no substep; rather, this
handler simply traps the exception and continues the
Linear Regression step, as indicated by the arrow badge
associated with the exception handler. (A handler with a
substep is shown in Figure 4.) In the context of a choice
step, continuing after an exception means that the agent is
ofibmd a choice of the remaining alternatives. A step may
also include reactions, which am attached as substeps to a
badge in the center of the control bar (however, reactions am
omitted here for the sake of simplicity).
In the visual representation of Little-JIL steps, a circular
badge above a step name represents the interface to the step.
The interface includes resources needed by the step, as well
as parameters sent into and out of the step, local data, and
events and exceptions that may be thrown by the step.
Execution agents are represented as a type of resource. Each
step has an execution agent; if none is specified for a step,
the execution agent is inherited from the step’s parent. In
Figures 2 and 3 the agents include both humans and
automated tools. Data sets can also be modeled as
resources. Several steps in the example throw exceptions
(designated in the interface by an X). While much of the
data flow between steps is shown in a simplified form,
most of the data declarations have been omitted from the
interfaces in the figures for the sake of brevity.
A Little-J& step may also have a prerequisite and/or a
postrequisite. A prerequisite is indicated by a downward-
pointing triangle on the left of the step name and a
postrequisite is indicated by an upward-pointing triangle on

the right. An empty triangle indicates no requisite; a filled
triangle with text indicates the name of the specified
requisite. The body of the requisite is a separately specified
step (not shown in our figures) possibly containing
multiple substeps. A requisite is successful if it terminates
normally; if it fails, it throws an exception. For example,
the step Construct LSR Model has the postrequisite No
Outliers. If outliers exist, then the postrequisite throws the
Outliers exception, which causes Construct LSR Model to
fail. The parent step Least Squares Regression propagates
the exception, which is handled by its parent Linear
Regression.
Clearly, there are many ways to add to the process specitied
in Figure 2. Additional pre- and post- requisites could be
added to the LSR and TGR steps, data preprocessing steps
could be added to improve the robustness of the process,
and other approaches to regression could be added. The
next section discusses one of the most important
elaborations to the process: how to deal with non-linearity.
3.3 Coping with Non-linearity
A common diagnostic technique for any form of linear
regression is to examine a plot of residuals. Ideally, the
residuals-the errors in Y left unexplained by a
model-should not vary with X. A non-linear relationship
between X and the residuals indicates a non-linear
relationship between X and Y, one that is not adequately
captured by the linear model. Checking for linear residuals
can be represented in Little-JIL as a postrequisite for the
Linear Regression step. What if this postrequisite fails?
One solution would be to try a non-linear modeling
technique such as locally-weighted regression or lowess [2].
Figure 3 shows a process that includes both the original

141

4 DataSet: BivariateData
0 agent: HumanAnalyst

h
V Model Relationshipa

Darn4 NoHomogeneity

mp??3skw

x Nosurr JNosubsetAvall~ble

SubsetAvailable
+ Choose a SubsetA V Use and Choose NextA

Figure 3: Handling inhomogeneous data

linear regression step and a new step for non-linear
regression. The “try” sequencing badge on the root
regression step indicates that non-linear regression is
invoked only if linear regression fails. Given the current
specification of linear regression, the principal reason the
step might fail is the presence of non-linear residuals.
Linear regression and non-linear regression are partitioned
as separate alternatives because different processes ate
required to determine if linear and non-linear models
indicate a relationship between X and Y. Linear regression
tests a relatively simple statistical hypothesis (l3, = 0); non-
linear regression relies on a step Evaluate Relationship in
which a human analyst makes a qualitative judgement. To
assist in that judgment, a step to construct confidence
intervals has been added to non-linear regression, although
analysts should be cautious to distinguish between
confidence intervals and significance tests [11.
Note that the overall Regression process coordinates the
work of human and non-human agents who participate at
various levels in the process. As with linear regression,
many additions to the regression process are possible,
These include additional approaches to non-linear
regression, more quantitative substitutes for the evaluate
relationship step, and prerequisites for the regression step.
The next section describes one particularly important
prerequisite for regression-homogeneity.
3.4 Coping with Inhomogeneity
A frequently overlooked assumption of regression is that
the data sample is homogeneous-that it represents a single

uniform phenomenon rather than two or more phenomena
with fundamentally di.&rent behavior (Figure lc). For
example, inhomogeneity can occur when men and women
have d&rent physiological responses to some
phenomenon, yet data t?om men and women are mixed
together for purposes of analysis. In contrast to outliers,
which o&n represent errors that cannot be explicitly
modeled, inhomogeneity represents two or more distinct
data regimes that require independent modeling.
Figure 4 shows a Model Relationships process that handles
inhomogeneous data. The process first attempts to apply
regression testing to a ‘given bivariate data set. However,
the regression step is guarded by a prerequisite that tests
the homogeneity of the data. This prerequisite assures that
a single regression is not performed on heterogeneous data.
If the prerequisite is violated, the exception
NonHomogeneity is thrown, which is caught by an
exception handler for Model Relationships. The recursive
process Model Subsets handles the exception. At the top
level Model Subsets is a sequence. The first substep,
Choose a Subset, chooses a data subset from the
inhomogeneous data set. The second substep is a parallel
step, Use and Choose Next. This substep, in parallel,
applies regression to the selected subset and recursively
calls Model Subsets on the remaining part of the data set.
By this recursion, Model Subsets iteratively models subsets
of the original data set, completing normally when no more
subsets are available (as indicated by the “check” badge on
the exception handler for the exception NoSubsetAvailable).

142

By combining the parallel step with recursion, multiple
data subsets may be modeled concurrently. Note that, in
this formulation of the process, a chosen data subset is not
guaranteed to be homogeneous. In that case, when the
process Regression is called on the subset, the
homogeneity prerequisite will again throw the
NonHomogeneity exception, which will take control back
to the exception handler for inhomogeneous data (i.e.,
Model Subsets). As an alternative, we could have put a test
for homogeneity as a postrequisite on the Choose a Subset
step.
4. Coordinating Agents at Process Execution

Time
In the preceding sections we have shown how Little-JIL can
be used to flexibly specify a process that manages inter-step
process dependencies for multiple execution agents. In this
section, we describe how the activities of these agents are
coordinated when a process is instantiated and executed.
The vehicle for agent coordination during process execution
is an agenda management system @MS). An agenda
management system is a software system that is based on
the metaphor of using agendas, or to-do lists, to coordinate
the activities of various human and automated agents. In
such a system, task execution assignments are made by
placing agenda items on an agenda that is monitored by
one or more execution agents. DiErent types of agenda
items may be used to represent different kinds of tasks that
an agent is asked to perform.
Our agenda management system [191 is composed of a
substrate that provides global access to AMS data, a set Cc
root object types (agendas, agenda items, etc.), application-
specific object types that extend the root types, and
application-specific agent interfaces (e.g., GUIs for human
agents).
We have designed and implemented an AMS specifically to
support the execution of Little-JIL processes. This AMS
has five types of agenda items: one item type corresponds
to each of the four Little-JR, step kinds, and one item type
corresponds to a process step at its lowest level cf
decomposition. Each Little-JIL agenda item has many
attributes, including step name, execution agent, current
status, log, step instance parameters, throwable exceptions,
and interpreter. The last attribute is provided because, as
we illustrate below, the Little-JIL interpretation architecture
allows each step to have its own interpreter instance.
When a step of a process program is first instantiated, an
agenda item of the appropriate type is created and its
attribute values are set accordingly (e.g., status is set to
“Posted,” input parameters are given the correct values).
As the process executes, the attribute values change
accordingly (e.g., the execution agent sets output parameter
values, status is changed). Thus, process program
execution state is stored within the AMS. This approach to
storing process state is similar to that used in the
ProcessWall [131.
An agent typically monitors one or more agendas to receive
tasks to perform. Multiple agendas are used because an
agent may frequently be involved in several disjoint

processes (or acting in roles that are logically disjoint).
When an item is posted to an agenda that an agent is
monitoring, the agent is notified that the agenda has
changed. In the case of a human agent, fbr example, this
could result in a new item appearing in the person’s agenda
view window. The agent is then responsible t?r
interpreting the item and performing the appropriate task.
Agents may also monitor items individually; this gives
them the ability to post an item to an agenda and to
observe the item so they can react to changes in the item’s
status, for example.
These mechanics are sufhcient for the Little-JIL interpie&
to instantiate and execute multi-agent Little-JIL process
programs. By examining the state of an agenda item
corresponding to a step of the process program, the
interpreter can execute the process. When a new step is to
be executed, the interpreter identifies the appropriate
execution agent (with the help of a resource management
system), creates an appropriately typed agenda item for that
step, and posts it on the agent’s agenda. As the agent
executes the step, its updated status is reflected in the
agenda item’s status attribute value, which is monitored by
the interpreter. As the status changes, the interpreter
accordingly creates and posts substeps, returns output
parameters on successful completion of the step, propagates
exceptions on unsuccessful completion, and so on. Thus,
an AMS provides language-independent facilities that allow
coordination to take place, while the interpreter encodes key
coordination semantics of the Little-JIL language itself.
This design decouples concerns about why and when
coordination should occur Tom concerns about how
coordination should occur.
For example, consider how the process program fragment in
Figure 2 would be executed, supposing an interpreter had
created an item to correspond to an instance of a Linear
Regression step (a Little-JIL choice step). Assume the
interpreter has identified a HumanAnalyst for this task
(named Herman), posted it to Herman’s agenda, and started
the item’s interpreter (which is stored in the interpreter
attribute of the item). At this point the human analyst
would use the GUI to change the status attribute of the
Linear Regression item to “Starting.” Its interpreter
would be notified of this change and would create two new
agenda items that correspond to the Least Squares
Regression and the Three Group Regression sub-steps,
then set the parent item’s status to “Started.” Because new
agents are not specified for these steps, the interpreter would
post them to Herman’s agenda and would start interpreters
for the new items. Herman’s agenda GUI would render the
agenda to clearly depict the subitems of the choice item as
alternatives.
Suppose Herman then chooses to start the Least Squares
Regression step, changing its status to “Starting.” At this
point both the Linear Regression item’s interpreter and the .
Least Squares Regression item’s interpreter would be
notified of the change. The Linear Regression item’s
interpreter would react by setting the status of the other
sub-item (Three Group Regression) to “Retracted.” This
would cause the item to disappear Tom Herman’s agenda.

143

Meanwhile, the Least Squares Regression item’s interpreter
would create a new item fbr the first substep, Construct
LSR Model. Because the process specifies an LSRTool kr
that step, the new item would be posted to a particular
LSRTool’s agenda, then the Least Squares Regression
item’s status would be set to “Started.” Whatever agent
was monitoring the LSRTool’s agenda would then be
notified that the tool’s agenda has changed. This agent
would extract whatever information was needed by the tool
from the agenda item, set the item’s status to “Starting,”
and would invoke the LSRTool agent. Because Construct
LSR Model is a leaf step, the item’s interpreter immediately
changes its state to “Started.” When the LSRTool finishes,
the tool’s agent would set the status of the leaf step
appropriately (“Completing” if successful or “Terminating”
if not), and that step’s interpreter would complete the
transition of the leaf step to a final state. The interpreter fix
the Least Squares Regression item would be notified that
the step has changed, and, depending on its status, would
start the next sequential sub-step or would terminate the
parent.
As previously mentioned, Little-JIL makes no distinction
between human and tool agents, Similarly, neither does
the AMS. As seen in the above example, di&rent agents
interact with the AMS, and consequently with the running
Little-J& process, via customized agent interfaces. For
humans, this interface may be a GUI that is used to change
an item’s status, signal exceptions, change parameters, etc.
For COTS tools (such as the LSRTooZ, perhaps), this
interface may be a wrapper agent that integrates the tool
with the AMS, spawning the tool to perform tasks in
response to agenda items being posted to the tool’s agenda
and reporting the results of tool execution by setting agenda
item attributes (e.g., parameters, status) as required.
Our early experiences support our belief that an agenda
management system provides an appropriate metaphor for
coordinating interaction in mixed-agent processes such as
KDD. We intend to continue experimenting with the use
of Little-JIL and the AMS to facilitate coordination in such
processes.
5. LESSONS LEARNED
Our experience using Little-JIL to specify KDD processes
has been instructive. Many coordination aspects of KDD
processes (including examples not described here) have
been easily expressed using Little-JIL. For example, one
aspect well handled by Little-JIL is the highly variable
control requirements of KDD processes. Conversely, KDD
processes have drawn on the full range of Little-JIL control
constructs. In some cases, processes require extremely
strict control, and Little-JIL allows us to indicate this (e.g.,
by executing substeps in a specified order). In other cases,
only very loose control is needed, and the language allowed
us to specify this as well (e.g., by allowing user choice or

. parallel execution). We believe that successful process
languages for KDD must allow flexibility to program
processes both strictly and loosely.
Little-JIL’s pre- and postrequisites are essential to e&ctive
coordination in processes. Prerequisites make explicit the

assumptions that underlie a sampling or analysis technique;
postrequisites make explicit the acceptance criteria for the
successful completion of a technique. The ability to make
assumptions and acceptance criteria explicit is important tbr
making a process understandable, evaluating its correctness,
assuring its consistent execution, and validating its results.
Similarly, the ability to represent exceptions and exception
handling is critical for process robustness, reliability, and
safety. In our KDD examples, exception management is
also crucial in specifying process control structures. While
many descriptions of KDD techniques use nearly ideal data,
most practitioners who attempt to apply these techniques
quickly uncover hidden assumptions, leading to exceptions
in idealized process models. The ability to indicate
possible exceptions, specify how they are to be handled,
and direct subsequent execution, is essential to
coordinating KDD efforts in real-world applications.
Resource management provides another dimension CE
coordination in processes. Flexibility in agent
coordination is afEuded because Little-JIL process can be
written independently of the specific execution agents to
which they will be bound at run time. Additionally, the
control model of the language, in conjunction with the
agenda management system, allows processes to be written
transparently with respeot to the issue of human versus
automated agents. However, runtime allocation of agents
allows dynamic orchestration of agent activities and enables
the dynamic adaptation of process behaviors to agent
availability. Similar degrees of flexibility and
opportunities for dynamic control apply to resources in
general.
6. FUTURE WORK
Our work to date with Little-JIL has convinced us of the
general utility of process specification. However, at least
three important areas of work remain. First, additional
experience with specif@ng processes is needed We intend
to increase the level of sophistication of the existing
processes and to develop processes in other application
domains. In particular, we have begun development cf
processes in the areas of coordination of robot and processes
used in electronic commerce.
Second, while we believe that Little-JIL specifications ate
easy to read and write compared to more algorithmic
languages, we would like the KDD process to be extended
by non-programmers. We imagine providing a more
sophisticated process editor that would assist a KDD
researcher by assisting with the insertion of appropriate
steps with the necessary prerequisites, postrequisites, data
flow and exception handling.
Finally, the Little-JIL language itself is still under
development and there are a number of issues we intend to
address. We are investigating integrating an AI planner
[lo] and resource-based scheduler [23] with Little-JIL.
Such mechanisms would allow us to schedule agents and
other resources based on cost, availability for a specific time
and duration, and expected quality of their results. The
results from planning would help. guide agents in their
decision making at choice and parallel steps by identifying

144

which substeps are most likely to satisfy the time, cost,
and quality constraints for process instances.
We are also investigating the use of static analysis
techniques [3] on Little-J& processes. Specifically, we
wish to prove properties of Little-JIL processes such as
ordering rules (Step A always executes before Step B) and
non-local dependencies (if Step A is performed, Step B is
eventually performed).
There are also some extensions to Little-JIL itself that we
want to consider further. In particular, KDD processes
appear to need a more explicit means of representing non-
local control flow dependencies. For example, in our
example regression process, a parametric significance test is
only applicable when least squares regression is used.
Currently, this control flow dependency is captured via data
flow in Little-JIL. That is, least squares regression results
in the computation of intermediate values that are used in
the parametric test. The precondition test for the pammetric
test checks whether those data exist, and, if they do not,
prevents the parametric test from being used. A more direct
means of expressing this control flow dependency would be
preferable to hiding it within the data flow, as is currently
done. A more direct means would also enable our static
analysis techniques to reason more effectively about the
behavior of the program.
7. CONCLUSIONS
Knowledge discovery research is developing and exploiting
a diverse and expanding set of data manipulation and
analysis techniques. Not all analysts, or even all
organizations, can have a thorough knowledge of how to
correctly and effectively combine and deploy these
techniques. Process programming provides an effective
means for specifying the coordinated use of KDD techniques
by agents in potentially complex KDD processes. As
demonstrated in this paper, KDD process specifications
written in Little-JIL express requirements on individual
techniques and capture dependencies among techniques.
Little-JIL is a high-level process language designed to
support the specification of coordination in processes;
Little-JII, offers appropriate control flow constructs, pm- and
post-requisites, reactions, exception handling, agent
specifications, and dynamic resource bindings. Little-JIL
enables explicit representation of KDD processes, allows
reasoning about those processes, and supports correct
execution of the processes. In turn, this enables KDD
applications to produce reliable and repeatable results,
which is necessary for the effective use of data mining across
a wide range of organizations.
ACKNOWLEDGMENTS
This work was supported in part by the Air Force Materiel
Command, Air Force Research Laboratory, and the Defense
Advanced Research Projects Agency under Contracts
F30602-94-C-0137, F30602-97-2-0032, and F30602-93-C-
0100.
REFERENCES
1. Cohen, P.R. Empirical Methodr for Artificial

Intelligence. MIT Press, 1995.

2. Cleveland, W. S. and Loader, C. R. Smoothing by
local regression: principles and methods (with
discussion). Computational Statistics, 1995.

3. Dwyer, M. and Clarke, L. A. Data Flow Analysis frr
Veri@ing Properties of Concurrent Programs, in ACM
SIGSOFT ‘94: Proc. of the Second ACM Sigsoft
Symp.on Found. of Soflw. Eng., (Dec. 1994), 62-75.

4. Edgington, E.S. Randomization Tests. (Third Ed.)
Dekker, 1995.

5. Emerson, J. D., and Hoaglin, D. C.. Resistant lines
for x versus y. In Hoaglin, D. C.; Mosteller, F.; and
Tukey, J. W., (Eds), Understanding Robust and
Exploratory Data Analysis. Wiley. 129-l 65, 1983.

6. Engels, Robert, Guido Lindner, and Rudi Studer. A
guided tour through the data mining jungle, in Proc. aE
the Third Intl. Conf. on Knowledge Discovery and
Data Mining (1997), 163-166.

7. Fayyad, Usama, Gregory Piatetsky-Shapiro, and
Padhraic Smyth. From data mining to knowledge
discovery in databases. AI Magazine. (Fall 1996), 37-
54.

8. Feelders, A. and W. Werkooijen. Which method
learns the most from data? Methodological issues in
the analysis of comparative studies, in Preliminary
papers of the Fifth Intl. Workshop on Artificial
Intelligence and Statistics (1995).

9. Gaines, Brian R. Refining induction into knowledge.
Knowledge Discovery in Data Bases, in Workshop
Notes from the Ninth Natl. Conf. on Artificial
Intelligence (1991). l-10.

10. Garvey, Alan, Keith Decker, and Victor Lesser. A
Negotiation-Based Interface between a Real-Time
Scheduler and a Decision-Maker, in Proc. of Workshop
on Models of Conflict Management in Cooperative
Problem Solving (1994), AAAI.

11. Gascuel, 0. and G. Caraux. Statistical significance in
inductive learning, in ECA192: Proc. of the 10th
European Conf. on Artificial Intelligence (1992). 435-
439.

12. Giles, C. Lee and Steve Lawrence. Presenting and
analyzing the results of AI experiments: Data averaging
and data snooping, in Proc. of the Fourteenth Natl.
Conf. on Artificial Intelligence (1997), AAAI Press.
362-367.

13. Heimbigner, D. The ProcessWall: A Process State
Server Approach to Process Programming in Proc. CE
the Fifth SIGSOFT Symp. on Softw. Development
Environments (Dec. 1992), 159- 168.

14. Jensen, D. and Cohen, P.R. Multiple comparisons in
induction algorithms. Machine Learning. Accepted
1998.

15. Jensen, D., Oates, T., and Cohen, P.R.. Building
Simple Models: A Case Study with Decision Trees. In
Advances in Intelligent Data Analysis: Reasoning

145

about Data, in Proc. of the Second Intl. Symp. IDA-97
(1997), 21 l-222.

16. Jensen, D. D. Unique Challenges of Managing
Inductive Knowledge, in Working Notes of the AAAI
1997 Spring Symp. on Artificial Intelligence in
Knowledge Management (1997), 75-81. Also in:
Artificial Intelligence and Knowledge Management.
Collected Papers from the 1997 Workshop. Technical
Report WS-97-09. AAAI Press. 25-3 1.

17. Lemer, B.S., Osterweil, L.J., Sutton, Jr., SM., and
Wise, A. Programming Process Coordination in
Little-JIL, in Proc. Of the 6” European Workshop on
Software Process Technology (1998), 127-131.

18. Lemer, B.S., Sutton, Jr., S.M., and Osterweil, L.J.
Enhancing Design Methods to Support Real Design
Processes, in Proc. Of the Ninth Intl. Workshop on
Software Specification and Design (1998).

19. McCall, E.K., Clarke, L. A., and Osterweil, L. J. An
Adaptable Generation Approach to Agenda
Management, in Proc. of the Twentieth Intl. Conf. on
Softw. Engg. (1998), 282-291.

20. Noreen, E.W. Computer Intensive Methods fbr
Testing Hypotheses: An Introduction. Wiley, 1989.

2 1. St. Amant, R. and Cohen, P.R. Submitted to
Intelligent Support for Exploratory Data Analysis,
1997.

22. Sutton, Jr., S.M. and Osterweil, L.J. The Design of a
Next-Generation Process Language, in Proc. of the
Joint 6th European Softw. Engg. Conf. and the 5th
ACM SIGSOFT Symp. on the Foundations of Sofhv.
Engg. (1997), Springer-Verlag, 142-158.

23. Wagner, T., Garvey, A., and Lesser, V. Complex
Goal Criteria and its Application in Design-to-Criteria
Scheduling, in Proc. of the Fourteenth Natl. Conf. on
Artificial Intelligence (1997).

24. Weiss, S. and Kulikowski, C.A. Computer Systems
That Learn. Morgan K.aufma.nn, 199 1.

25. Wise, A. Little-JIL 1.0 Language Report. CMPSCI
Technical Report 98-24. University of Massachusetts
Amherst, Computer Science Dept., 1998.

26. Zhong, N., Liu, C., Kakemoto, Y., and Ohsuga S.
KDD process planning, in Proc. of the Third Intl.
Conf. on Knowledge Discovery and Data Mining
(1997), 291-294.

146

