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ABSTRACT 
Knowledge discovery in databases (KDD) is an increasingly 
widespread activity. KDD processes may entail the use of a 
large number of data manipulation and analysis techniques, 
and new techniques are being developed on an ongoing 
basis. A challenge for the effective use of KDD is 
coordinating the use of these techniques, which may be 
highly specialized, conditional and contingent. 
Additionally, the understanding and validity of KDD 
results can depend critically on the processes by which they 
were derived. We propose to use process programming to 
address the coordination of agents in the use of KDD 
techniques. We illustrate this approach using the process 
language LittleGIL to program a representative bivariate 
regression process. With Little-JIL programs we can clearly 
capture the coordination of KDD activities, including 
control flow, pm- and post-requisites, exception handling, 
and resource usage. 
Keywords: 
Knowledge discovery process, Knowledge representation, 
Agent coordination, Agenda management, Process 
programming 
1. INTRODUCTION 
KDD-knowledge discovery in databases-has become a 
widespread activity undertaken by an increasing number 
and variety of industrial, governmental, and research 
organizations. KDD is used to address diverse and oflen 
unprecedented questions on issues ranging f?om marketing, 
to f&d detection, to Web analysis, to command and 
control. To support these diverse needs, researchers have 
devised scores of techniques for data preparation, 
transformation, mining, and postprocessing. Moreover, 
dozens of new techniques are added each year. While the 
growing collection of techniques and tools helps address 
the growing set of needs, the size and rapid growth of the 
collection is becoming something of a problem itself. 
Many of the techniques will yield incorrect results unless 
they are used correctly with other techniques. In addition, 
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KDD is often done by teams whose activities must be 
correctly coordinated. 
Thus, one of the chief challenges facing an organization that 
wishes to conduct KDD is in assuring that data analysis 
and processing techniques are used appropriately and 
correctly and that the activities of teams assembled to do 
KDD are properly controlled and coordinated. The 
applicability of techniques can depend on a number d 
factors, including the question to be addressed, the 
characteristics of the data being studied, and the history CE 
processing of those data. This problem can be 
compounded if the organization lacks experience with the 
(possibly new) techniques, or if individual analysts on a 
team d&r with respect to their general level of expertise, 
specialized knowledge about the data (e.g., biases and 
assumptions), or familiarity with particular analysis 
techniques (pitfalls and tricks). The problem can be further 
exacerbated if multiple analysts must be orchestrated in a 
KDD effort, or if the resources required to support the KDD 
effort are scarce or subject to competitive access. 
We view these problems as issues of coordination, with the 
general goal being to assure that the right team member 
applies the right technique to the right data at the right 
time. Similar problems of coordination come up in 
software development, for example, in the application CE 
software tools to &ware artifacts, the assignment d 
developers to development tasks, and the organization cf 
tasks in the execution of software methods. We have 8 
applied process programming to solve coordination 
problems in software development [ 17, 181, and we believe 
that process programming is also suited to representing and 
supporting coordination in KDD processes. The 
applicability of approaches based on software process 
programming is further suggested by other similarities 
between KDD processes and software processes. For 
example, both sorts of problems entail the involvement CE 
both human and automated agents, the combination CE 
algorithmic and non-algorithmic techniques, the reliance on 
external resources, and the need to react to contingencies 
and handle exceptions. Additionally, issues of process are 
important in understanding and assuring the validity d 
KDD results. 
In this paper we argue that a process orientation is 
important for KDD and that process programming is an 
appropriate technique for effecting good coordination in the 
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use of KDD techniques. We support this argument ‘with 
examples programmed in Little-EL, a process language that 
emphasizes coordination of activities, agents, and the use d 
resources and artifacts. We believe that Little-IIL provides 
a basis for orchestrating coordination that assures 
correctness and consistency in the specification and 
execution of KDD processes, and assures that agents will 
have the ability to communicate, analyze, and generally 
reason about the coordination of KDD techniques. 
2. KDD PROCESSES 
A process can be thought of as a multi-step plan fnr 
completing a given task. A process specification defines a 
class of process instances. Each instance conforms to the 
specification, but carries out its work in ways that ate 
molded by the mix of agents and data that are available 
when the process is executed. Instances differ from each 
other in ways that include the selection of agents that 
execute particular steps, the order in which steps ate 
executed, and the choice of which substeps are used to 
complete a given step. 
For example, a single KDD process specification tbr 
bivariate regression might allow choice among multiple 
methods for handling outliers (e.g., manual removal, 
automatic removal, non-removal), for constructing a 
regression model (simple least-squares regression, locally- 
weighted regression, and three group resistant line), and for 
estimating statistical significance (parametric estimates, 
randomization tests). Naively assuming no interstep 
constraints and only these three steps, this very simple 
process can be instantiated in 18 different ways - a 
potentially confusing number for an unaided user. 
Some of these possible configurations of process steps are 
clearly more desirable and effective than others in di&rent 
situations. Thus researchers and practitioners have begun 
to provide this sort of guidance. Presently this takes the 
form of technical papers that specirjl desirable processes in 
informal ways. We believe that there is considerable value 
in augmenting these tiormal descriptions with the more 
precise, complete, and formal specifications that ate 
achievable through process programming. Capturing and 
representing processes precisely, completely, and clearly is 
notoriously difficult, but our preliminary work indicates 
that caremlly designed process specification languages can 
greatly facilitate this task. 
2.1 Processes are Particularly Important to 

KDD 
Explicit representation of processes is particularly important 
in KDD. First, effective KDD requires managing 
dependencies between steps. Some steps may require, 
disallow, or enable other steps. For example, using most 
neural network training algorithms requires a preceding step 
to recode missing values. Non-parametric regression 
techniques disallow any subsequent step to construct 
parametric confidence intervals. Constructing a decision 
tree enables a Uure step of pruning that tree. Explicit 
representations of these dependencies can assure that they 
are appropriately handled. 

Second, the details of processes are essential to determining 
the statistical validity of inductive inferences. One example 
of this is the well-known error of testing on training data 
[24]. KDD processes that do not enforce separation 
between training and testing data (e.g., through simple 
disjoint sets or cross-validation) will produce biased 
estimates of model accuracy. The underlying cause of this 
phenomenon - referred to as “multiple comparisons” in 
statistics - has fhr more general effects. It has been 
causally linked to several pathologies of data mining 
algorithms, including attribute selection errors, overfitting, 
and oversearching [ 143 and pathological growth in the size 
of decision trees [ 151. It has also been causally linked to 
errors in evaluating several types of modeling algorithms 
[8, 11, 121. KDD systems that employ multiple analysts 
distributed in time and space are particularly susceptible to 
pathologies stemming fhnn multiple comparisons [16]. 
Explicit representation of KDD processes supports analyses 
that can determine when these pathologies can and cannot 
occur. In addition, the ability to reinvoke an identical 
process is a necessary prerequisite to solutions such as 
randomization tests, cross-validation, and bootstrap 
estimates [20]. Explicit representation of processes 
provides a vehicle for assuring that reinvocations are indeed 
identical. 
Third, process details are vital to establishing the validity 
of KDD results in more general ways. The literature d 
KDD, statistics, and machine learning is filled with 
discoveries of implicit assumptions underlying particular 
techniques. In most cases, the only way to verify whether 
these assumptions are met is to examine the process used 
to apply a particular technique. Only by knowing the 
process used to derive a result can potential errors be traced 
back to their source. Explicit KDD process descriptions 
capture these details. 
Fourth, explicit representation of KDD processes can help 
balance multiple perfomumce goals. Several approaches to 
a given analysis task may produce results of di&ring 
statistical validity, comprehensibility, and ultimate utility. 
In addition, those techniques may require di&ent amounts 
of computation eflbrt and human attention. By explicitly 
representing these characteristics as part of the specification 
of individual steps, the process specification can be created 
that meets particular objectives (e.g., “give me a fast 
approximate result” or “give me a highly accurate result, 
but take all night if you need it”). 
2.2 Combinlng Human Analysts and Automated 

Agents 
Research on KDD processes represents a return to one of the 
central issues of early work in KDD: how best to combine 
the goals and expertise of human users with powerful 
automated data analysis tools. While this topic was 
identified as a central one by early work in the field (e.g., 
[9]), it can be overlooked in our rush to develop more 
sophisticated automated techniques. Recent work has 
returned to this theme, including general descriptions CE 
KDD processes (e.g., [7]), analysis and integration of steps 
[6, 261, formulation of exploratory data analysis as an AI 
planning activity [21], and a nascent industry effort to 
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Figure 1: Simple bivariate regression and two common problems 

formulate standard KDD processes (CRISP-DM (see 
http://www.ncr.dk/CRISP/)). More broadly, we believe 
that the effective integration of the work of human and 
automated agents is a problem that is at the core of a 
growing number of critical problems. We believe that we 
can advance work on this problem by studying it in the 
more specific context of mixed-agent coordination in KDD 
process specification. 
One important note: our work explores how to coordinate 
the activities of multiple KDD agents, be they automated or 
human. Our work does not concern programming 
individual automated agents for such tasks as training a 
neural network or calculating a &i-square statistic. These 
tasks are best done using conventional programming 
languages and software engineering techniques. Our work 
also does not attempt to tell human analysts how to do 
their job. Human analysts have knowledge and expertise 
that is essential to the KDD process. Instead, we axe 
exploring flexible languages that can be used to coordinate 
the actions of experienced human analysts with those d 
automated agents and to build processes that enable less 
experienced analysts to achieve high-quality results. The 
next section provides an extended example of one such 
language. 
3. AN EXAMPLE: BIVARIATE REGRESSION 
In this section we present an example of a KDD process t?x 
bivariate regression. Regression appears to be a relatively 
simple process, but it is an appropriate example 
nevertheless. First, it is a common data analysis activity, 
regression tools are included in several KDD workbenches, 
and it is a basic task in deployed KDD applications. 
Second, the process is not actually as simple as it may 
appear. It involves a combination of human and automated 
agents, it may draw on a variety of analytical techniques, 
the use of these techniques may be conditional and 
contingent, interdependencies exist between certain 
techniques, and the whole process may entail sequential, 
parallel, alternative, and recursive activities. Thus, 
although bivariate regression is a relatively “small” process, 
it still suffers many of the coordination problems that 
process programming is intended to address. 

The basic bivariate regression problem can be described 
simply (see Figure la). We have a continuously-valued 
variable X (e.g., advertising spending), and we wish to 
determine whether it can help us predict another 
continuously-valued variable Y (e.g., net sales). To assess 
this relationship between X and Y, we have a data sample 
of N (x, y) tuples. 
In this section, we present a process that coordinates agents 
and techniques in the performance of bivariate regression. 
We begin with basic linear regression, and then expand the 
example to incorporate further functionality in the form CE 
non-linear regression and accommodation cf 
inhomogeneous data sets (i.e., data reflecting two or more 
independent phenomena). The process is defined using the 
Little-JIL process language [25], which is described with 
reference to the examples. 
This process should not be taken as a complete or 
comprehensive specification. It contains both intentional 
and unintentional simplifications. That said, we believe 
that it illustrates many of the necessary features of a more 
complete specification, and that the Little-JIL language 
could be used to represent many of the necessary details in 
a more complete specification. 
3.1 Linear Regression 
The most common approach to the task of bivariate 
regression is linear regression. Linear regression constructs 
a model of the form y = 131x + Ro, and allows easy 
assessment of the statistical significance of the slope Dr. 
We can conclude that X and Y are dependent if we can 
reject the null hypothesis that l3r is zero with high 
confidence. 
Least squares regression (LSR) is the most commonly used 
form of linear regression. The advantages of LSR include 
relatively high statistical power and computational 
efficiency. However, LSR’s desirable characteristics rest on 
several assumptions, including homostirticity (the 
variance of Y is independent of X) and the absence d 
outliers- (x, y) tuples that lie far from all other points. 
Outhers often represent errors or highly unusual conditions 
that produce extreme values. 
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Figure 1: LittIe-JIL specification for linear regression 
Consider the assumption about outliers in more detail. 
Outliers strongly affect LSR models-a single outlier can 
sharply shift an LSR model, causing it to accurately predict 
neither the outlier, nor the other data points (Figure lb). 
An alternative modeling technique -three group regression 
(TGR) [5]-is robust to the presence of outliers. TGR 
divides the range of X into three groups with equal 
numbers of points, finds the median X and Y value of each 
group, and constructs a line from those three points. 
Because the median is a measure of central tendency that is 
resistant to outliers, TGR is much less strongly a&&d by 
outliers than LSR. 
TGR addresses the problem of outliers, but the parametric 
significance test of f.3, used for LSR does not apply to TGR. 
Instead, a computationally-intensive-technique - random- 
ization test [ 1, 4]- should be used to test significance ti 
Ill, the slope of the line built with TGR. Incidentally, a 
randomization test can also be used for LSR (although, due 
to its computational cost, we chose to exclude this h 
our example process). 
How the varied activities of linear regression should be 
coordinated, in light of the relevant dependencies, 
conditions, alternatives, and contingencies, is precisely 
what a cogent process definition should make clear. Such 
process definitions require a process language that enables 
coordination semantics to be expressed clearly and 
concisely, that allows rigor and flexibility to be combined 
as appropriate, and that supports effiive process 
enforcement while admitting dynamic adaptation, 
3.2 Representing a Linear Regression Process 
In this section we illustrate the linear regression process 
using the Little-JIL process language. Little-JIL is a visual 
language derived f?om a subset of JIL, a process language 
originally developed for sofhvare development processes 
[22]. Little-JIL focuses on coordiniition of agents in the 
pe~%.nmance of process activities in a wide range cf 
processes. 

TGRTool 

Little-JIL represents the activities of a process as steps, 
where each step can be decomposed into substeps. 
Substeps within a step can be invoked either proactively or 
reactively. A step may also have a prerequisite to guard 
entry into the step, a postrequisite to guard exit f?om the 
step, and exception handlers to handle exceptions thrown 
during the step. The requisites and exception handlers in 
turn am steps that may also have substeps, etc. In 
addition, steps may include resource specifications. 
Runtime management of resource allocation provides 
another means of dynamically constraining, adapting, and 
controlling process execution. Each step also has, as a 
distinguished resource, an execution agent, which is 
responsible for initiating and carrying out the work of the 
step. Execution agents may be human or automated, and 
both types may be transparently combined ih a Little-JIL 
process. These features and others are illustrated and 
discussed below with respect to the examples. 
Figure 2 shows a Little-JIL specification of a linear 
regression process. Process steps in Little-JIL m 
represented visually by a step name surrounded by several 
graphical badges that represent aspects of step semantics. 
The bar below the step represents control of substeps. The 
leftmost element in the control bar is a sequencing badge 
that indicates how substeps should be executed. For 
example, the Linear Regression step in Figure 2 contains a 
circle-with-slash badge that represents a “choice” control 
construct; this indicates that Linear Regression is executed 
by executing one of the alternatives Least Squares 
Regression or Three Group Regression. The agent, an 
analyst to whom the step is assigned, makes this choice. 
Least Squares Regression and Three Group Regression, in 
turn, axe executed by executing a sequence of substeps, as 
indicated by the arrow control badge. (Two other proactive 
control badges, “try” and “parallel”, are discussed with 
respect to later figures.) 
The rightmost element of a step control bar represents 
exception handlers. Exception handlers may be simple 
actions or more complex subprocesses, represented by 
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Figure 2: Regression with substeps for linear and non-linear regression 
additional substeps. The simple actions include completing 
the step, continuing the step, restarting the step, and 
rethrowing the exception. In Figure 2, the exception 
handler for the Outliers exception (thrown by step 
Construct Linear Model) has no substep; rather, this 
handler simply traps the exception and continues the 
Linear Regression step, as indicated by the arrow badge 
associated with the exception handler. (A handler with a 
substep is shown in Figure 4.) In the context of a choice 
step, continuing after an exception means that the agent is 
ofibmd a choice of the remaining alternatives. A step may 
also include reactions, which am attached as substeps to a 
badge in the center of the control bar (however, reactions am 
omitted here for the sake of simplicity). 
In the visual representation of Little-JIL steps, a circular 
badge above a step name represents the interface to the step. 
The interface includes resources needed by the step, as well 
as parameters sent into and out of the step, local data, and 
events and exceptions that may be thrown by the step. 
Execution agents are represented as a type of resource. Each 
step has an execution agent; if none is specified for a step, 
the execution agent is inherited from the step’s parent. In 
Figures 2 and 3 the agents include both humans and 
automated tools. Data sets can also be modeled as 
resources. Several steps in the example throw exceptions 
(designated in the interface by an X). While much of the 
data flow between steps is shown in a simplified form, 
most of the data declarations have been omitted from the 
interfaces in the figures for the sake of brevity. 
A Little-J& step may also have a prerequisite and/or a 
postrequisite. A prerequisite is indicated by a downward- 
pointing triangle on the left of the step name and a 
postrequisite is indicated by an upward-pointing triangle on 

the right. An empty triangle indicates no requisite; a filled 
triangle with text indicates the name of the specified 
requisite. The body of the requisite is a separately specified 
step (not shown in our figures) possibly containing 
multiple substeps. A requisite is successful if it terminates 
normally; if it fails, it throws an exception. For example, 
the step Construct LSR Model has the postrequisite No 
Outliers. If outliers exist, then the postrequisite throws the 
Outliers exception, which causes Construct LSR Model to 
fail. The parent step Least Squares Regression propagates 
the exception, which is handled by its parent Linear 
Regression. 
Clearly, there are many ways to add to the process specitied 
in Figure 2. Additional pre- and post- requisites could be 
added to the LSR and TGR steps, data preprocessing steps 
could be added to improve the robustness of the process, 
and other approaches to regression could be added. The 
next section discusses one of the most important 
elaborations to the process: how to deal with non-linearity. 
3.3 Coping with Non-linearity 
A common diagnostic technique for any form of linear 
regression is to examine a plot of residuals. Ideally, the 
residuals-the errors in Y left unexplained by a 
model-should not vary with X. A non-linear relationship 
between X and the residuals indicates a non-linear 
relationship between X and Y, one that is not adequately 
captured by the linear model. Checking for linear residuals 
can be represented in Little-JIL as a postrequisite for the 
Linear Regression step. What if this postrequisite fails? 
One solution would be to try a non-linear modeling 
technique such as locally-weighted regression or lowess [2]. 
Figure 3 shows a process that includes both the original 
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Figure 3: Handling inhomogeneous data 

linear regression step and a new step for non-linear 
regression. The “try” sequencing badge on the root 
regression step indicates that non-linear regression is 
invoked only if linear regression fails. Given the current 
specification of linear regression, the principal reason the 
step might fail is the presence of non-linear residuals. 
Linear regression and non-linear regression are partitioned 
as separate alternatives because different processes ate 
required to determine if linear and non-linear models 
indicate a relationship between X and Y. Linear regression 
tests a relatively simple statistical hypothesis (l3, = 0); non- 
linear regression relies on a step Evaluate Relationship in 
which a human analyst makes a qualitative judgement. To 
assist in that judgment, a step to construct confidence 
intervals has been added to non-linear regression, although 
analysts should be cautious to distinguish between 
confidence intervals and significance tests [ 11. 
Note that the overall Regression process coordinates the 
work of human and non-human agents who participate at 
various levels in the process. As with linear regression, 
many additions to the regression process are possible, 
These include additional approaches to non-linear 
regression, more quantitative substitutes for the evaluate 
relationship step, and prerequisites for the regression step. 
The next section describes one particularly important 
prerequisite for regression-homogeneity. 
3.4 Coping with Inhomogeneity 
A frequently overlooked assumption of regression is that 
the data sample is homogeneous-that it represents a single 

uniform phenomenon rather than two or more phenomena 
with fundamentally di.&rent behavior (Figure lc). For 
example, inhomogeneity can occur when men and women 
have d&rent physiological responses to some 
phenomenon, yet data t?om men and women are mixed 
together for purposes of analysis. In contrast to outliers, 
which o&n represent errors that cannot be explicitly 
modeled, inhomogeneity represents two or more distinct 
data regimes that require independent modeling. 
Figure 4 shows a Model Relationships process that handles 
inhomogeneous data. The process first attempts to apply 
regression testing to a ‘given bivariate data set. However, 
the regression step is guarded by a prerequisite that tests 
the homogeneity of the data. This prerequisite assures that 
a single regression is not performed on heterogeneous data. 
If the prerequisite is violated, the exception 
NonHomogeneity is thrown, which is caught by an 
exception handler for Model Relationships. The recursive 
process Model Subsets handles the exception. At the top 
level Model Subsets is a sequence. The first substep, 
Choose a Subset, chooses a data subset from the 
inhomogeneous data set. The second substep is a parallel 
step, Use and Choose Next. This substep, in parallel, 
applies regression to the selected subset and recursively 
calls Model Subsets on the remaining part of the data set. 
By this recursion, Model Subsets iteratively models subsets 
of the original data set, completing normally when no more 
subsets are available (as indicated by the “check” badge on 
the exception handler for the exception NoSubsetAvailable). 
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By combining the parallel step with recursion, multiple 
data subsets may be modeled concurrently. Note that, in 
this formulation of the process, a chosen data subset is not 
guaranteed to be homogeneous. In that case, when the 
process Regression is called on the subset, the 
homogeneity prerequisite will again throw the 
NonHomogeneity exception, which will take control back 
to the exception handler for inhomogeneous data (i.e., 
Model Subsets). As an alternative, we could have put a test 
for homogeneity as a postrequisite on the Choose a Subset 
step. 
4. Coordinating Agents at Process Execution 

Time 
In the preceding sections we have shown how Little-JIL can 
be used to flexibly specify a process that manages inter-step 
process dependencies for multiple execution agents. In this 
section, we describe how the activities of these agents are 
coordinated when a process is instantiated and executed. 
The vehicle for agent coordination during process execution 
is an agenda management system @MS). An agenda 
management system is a software system that is based on 
the metaphor of using agendas, or to-do lists, to coordinate 
the activities of various human and automated agents. In 
such a system, task execution assignments are made by 
placing agenda items on an agenda that is monitored by 
one or more execution agents. DiErent types of agenda 
items may be used to represent different kinds of tasks that 
an agent is asked to perform. 
Our agenda management system [ 191 is composed of a 
substrate that provides global access to AMS data, a set Cc 
root object types (agendas, agenda items, etc.), application- 
specific object types that extend the root types, and 
application-specific agent interfaces (e.g., GUIs for human 
agents). 
We have designed and implemented an AMS specifically to 
support the execution of Little-JIL processes. This AMS 
has five types of agenda items: one item type corresponds 
to each of the four Little-JR, step kinds, and one item type 
corresponds to a process step at its lowest level cf 
decomposition. Each Little-JIL agenda item has many 
attributes, including step name, execution agent, current 
status, log, step instance parameters, throwable exceptions, 
and interpreter. The last attribute is provided because, as 
we illustrate below, the Little-JIL interpretation architecture 
allows each step to have its own interpreter instance. 
When a step of a process program is first instantiated, an 
agenda item of the appropriate type is created and its 
attribute values are set accordingly (e.g., status is set to 
“Posted,” input parameters are given the correct values). 
As the process executes, the attribute values change 
accordingly (e.g., the execution agent sets output parameter 
values, status is changed). Thus, process program 
execution state is stored within the AMS. This approach to 
storing process state is similar to that used in the 
ProcessWall [ 131. 
An agent typically monitors one or more agendas to receive 
tasks to perform. Multiple agendas are used because an 
agent may frequently be involved in several disjoint 

processes (or acting in roles that are logically disjoint). 
When an item is posted to an agenda that an agent is 
monitoring, the agent is notified that the agenda has 
changed. In the case of a human agent, fbr example, this 
could result in a new item appearing in the person’s agenda 
view window. The agent is then responsible t?r 
interpreting the item and performing the appropriate task. 
Agents may also monitor items individually; this gives 
them the ability to post an item to an agenda and to 
observe the item so they can react to changes in the item’s 
status, for example. 
These mechanics are sufhcient for the Little-JIL interpie& 
to instantiate and execute multi-agent Little-JIL process 
programs. By examining the state of an agenda item 
corresponding to a step of the process program, the 
interpreter can execute the process. When a new step is to 
be executed, the interpreter identifies the appropriate 
execution agent (with the help of a resource management 
system), creates an appropriately typed agenda item for that 
step, and posts it on the agent’s agenda. As the agent 
executes the step, its updated status is reflected in the 
agenda item’s status attribute value, which is monitored by 
the interpreter. As the status changes, the interpreter 
accordingly creates and posts substeps, returns output 
parameters on successful completion of the step, propagates 
exceptions on unsuccessful completion, and so on. Thus, 
an AMS provides language-independent facilities that allow 
coordination to take place, while the interpreter encodes key 
coordination semantics of the Little-JIL language itself. 
This design decouples concerns about why and when 
coordination should occur Tom concerns about how 
coordination should occur. 
For example, consider how the process program fragment in 
Figure 2 would be executed, supposing an interpreter had 
created an item to correspond to an instance of a Linear 
Regression step (a Little-JIL choice step). Assume the 
interpreter has identified a HumanAnalyst for this task 
(named Herman), posted it to Herman’s agenda, and started 
the item’s interpreter (which is stored in the interpreter 
attribute of the item). At this point the human analyst 
would use the GUI to change the status attribute of the 
Linear Regression item to “Starting.” Its interpreter 
would be notified of this change and would create two new 
agenda items that correspond to the Least Squares 
Regression and the Three Group Regression sub-steps, 
then set the parent item’s status to “Started.” Because new 
agents are not specified for these steps, the interpreter would 
post them to Herman’s agenda and would start interpreters 
for the new items. Herman’s agenda GUI would render the 
agenda to clearly depict the subitems of the choice item as 
alternatives. 
Suppose Herman then chooses to start the Least Squares 
Regression step, changing its status to “Starting.” At this 
point both the Linear Regression item’s interpreter and the . 
Least Squares Regression item’s interpreter would be 
notified of the change. The Linear Regression item’s 
interpreter would react by setting the status of the other 
sub-item (Three Group Regression) to “Retracted.” This 
would cause the item to disappear Tom Herman’s agenda. 
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Meanwhile, the Least Squares Regression item’s interpreter 
would create a new item fbr the first substep, Construct 
LSR Model. Because the process specifies an LSRTool kr 
that step, the new item would be posted to a particular 
LSRTool’s agenda, then the Least Squares Regression 
item’s status would be set to “Started.” Whatever agent 
was monitoring the LSRTool’s agenda would then be 
notified that the tool’s agenda has changed. This agent 
would extract whatever information was needed by the tool 
from the agenda item, set the item’s status to “Starting,” 
and would invoke the LSRTool agent. Because Construct 
LSR Model is a leaf step, the item’s interpreter immediately 
changes its state to “Started.” When the LSRTool finishes, 
the tool’s agent would set the status of the leaf step 
appropriately (“Completing” if successful or “Terminating” 
if not), and that step’s interpreter would complete the 
transition of the leaf step to a final state. The interpreter fix 
the Least Squares Regression item would be notified that 
the step has changed, and, depending on its status, would 
start the next sequential sub-step or would terminate the 
parent. 
As previously mentioned, Little-JIL makes no distinction 
between human and tool agents, Similarly, neither does 
the AMS. As seen in the above example, di&rent agents 
interact with the AMS, and consequently with the running 
Little-J& process, via customized agent interfaces. For 
humans, this interface may be a GUI that is used to change 
an item’s status, signal exceptions, change parameters, etc. 
For COTS tools (such as the LSRTooZ, perhaps), this 
interface may be a wrapper agent that integrates the tool 
with the AMS, spawning the tool to perform tasks in 
response to agenda items being posted to the tool’s agenda 
and reporting the results of tool execution by setting agenda 
item attributes (e.g., parameters, status) as required. 
Our early experiences support our belief that an agenda 
management system provides an appropriate metaphor for 
coordinating interaction in mixed-agent processes such as 
KDD. We intend to continue experimenting with the use 
of Little-JIL and the AMS to facilitate coordination in such 
processes. 
5. LESSONS LEARNED 
Our experience using Little-JIL to specify KDD processes 
has been instructive. Many coordination aspects of KDD 
processes (including examples not described here) have 
been easily expressed using Little-JIL. For example, one 
aspect well handled by Little-JIL is the highly variable 
control requirements of KDD processes. Conversely, KDD 
processes have drawn on the full range of Little-JIL control 
constructs. In some cases, processes require extremely 
strict control, and Little-JIL allows us to indicate this (e.g., 
by executing substeps in a specified order). In other cases, 
only very loose control is needed, and the language allowed 
us to specify this as well (e.g., by allowing user choice or 

. parallel execution). We believe that successful process 
languages for KDD must allow flexibility to program 
processes both strictly and loosely. 
Little-JIL’s pre- and postrequisites are essential to e&ctive 
coordination in processes. Prerequisites make explicit the 

assumptions that underlie a sampling or analysis technique; 
postrequisites make explicit the acceptance criteria for the 
successful completion of a technique. The ability to make 
assumptions and acceptance criteria explicit is important tbr 
making a process understandable, evaluating its correctness, 
assuring its consistent execution, and validating its results. 
Similarly, the ability to represent exceptions and exception 
handling is critical for process robustness, reliability, and 
safety. In our KDD examples, exception management is 
also crucial in specifying process control structures. While 
many descriptions of KDD techniques use nearly ideal data, 
most practitioners who attempt to apply these techniques 
quickly uncover hidden assumptions, leading to exceptions 
in idealized process models. The ability to indicate 
possible exceptions, specify how they are to be handled, 
and direct subsequent execution, is essential to 
coordinating KDD efforts in real-world applications. 
Resource management provides another dimension CE 
coordination in processes. Flexibility in agent 
coordination is afEuded because Little-JIL process can be 
written independently of the specific execution agents to 
which they will be bound at run time. Additionally, the 
control model of the language, in conjunction with the 
agenda management system, allows processes to be written 
transparently with respeot to the issue of human versus 
automated agents. However, runtime allocation of agents 
allows dynamic orchestration of agent activities and enables 
the dynamic adaptation of process behaviors to agent 
availability. Similar degrees of flexibility and 
opportunities for dynamic control apply to resources in 
general. 
6. FUTURE WORK 
Our work to date with Little-JIL has convinced us of the 
general utility of process specification. However, at least 
three important areas of work remain. First, additional 
experience with specif@ng processes is needed We intend 
to increase the level of sophistication of the existing 
processes and to develop processes in other application 
domains. In particular, we have begun development cf 
processes in the areas of coordination of robot and processes 
used in electronic commerce. 
Second, while we believe that Little-JIL specifications ate 
easy to read and write compared to more algorithmic 
languages, we would like the KDD process to be extended 
by non-programmers. We imagine providing a more 
sophisticated process editor that would assist a KDD 
researcher by assisting with the insertion of appropriate 
steps with the necessary prerequisites, postrequisites, data 
flow and exception handling. 
Finally, the Little-JIL language itself is still under 
development and there are a number of issues we intend to 
address. We are investigating integrating an AI planner 
[lo] and resource-based scheduler [23] with Little-JIL. 
Such mechanisms would allow us to schedule agents and 
other resources based on cost, availability for a specific time 
and duration, and expected quality of their results. The 
results from planning would help. guide agents in their 
decision making at choice and parallel steps by identifying 
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which substeps are most likely to satisfy the time, cost, 
and quality constraints for process instances. 
We are also investigating the use of static analysis 
techniques [3] on Little-J& processes. Specifically, we 
wish to prove properties of Little-JIL processes such as 
ordering rules (Step A always executes before Step B) and 
non-local dependencies (if Step A is performed, Step B is 
eventually performed). 
There are also some extensions to Little-JIL itself that we 
want to consider further. In particular, KDD processes 
appear to need a more explicit means of representing non- 
local control flow dependencies. For example, in our 
example regression process, a parametric significance test is 
only applicable when least squares regression is used. 
Currently, this control flow dependency is captured via data 
flow in Little-JIL. That is, least squares regression results 
in the computation of intermediate values that are used in 
the parametric test. The precondition test for the pammetric 
test checks whether those data exist, and, if they do not, 
prevents the parametric test from being used. A more direct 
means of expressing this control flow dependency would be 
preferable to hiding it within the data flow, as is currently 
done. A more direct means would also enable our static 
analysis techniques to reason more effectively about the 
behavior of the program. 
7. CONCLUSIONS 
Knowledge discovery research is developing and exploiting 
a diverse and expanding set of data manipulation and 
analysis techniques. Not all analysts, or even all 
organizations, can have a thorough knowledge of how to 
correctly and effectively combine and deploy these 
techniques. Process programming provides an effective 
means for specifying the coordinated use of KDD techniques 
by agents in potentially complex KDD processes. As 
demonstrated in this paper, KDD process specifications 
written in Little-JIL express requirements on individual 
techniques and capture dependencies among techniques. 
Little-JIL is a high-level process language designed to 
support the specification of coordination in processes; 
Little-JII, offers appropriate control flow constructs, pm- and 
post-requisites, reactions, exception handling, agent 
specifications, and dynamic resource bindings. Little-JIL 
enables explicit representation of KDD processes, allows 
reasoning about those processes, and supports correct 
execution of the processes. In turn, this enables KDD 
applications to produce reliable and repeatable results, 
which is necessary for the effective use of data mining across 
a wide range of organizations. 
ACKNOWLEDGMENTS 
This work was supported in part by the Air Force Materiel 
Command, Air Force Research Laboratory, and the Defense 
Advanced Research Projects Agency under Contracts 
F30602-94-C-0137, F30602-97-2-0032, and F30602-93-C- 
0100. 
REFERENCES 
1. Cohen, P.R. Empirical Methodr for Artificial 

Intelligence. MIT Press, 1995. 

2. Cleveland, W. S. and Loader, C. R. Smoothing by 
local regression: principles and methods (with 
discussion). Computational Statistics, 1995. 

3. Dwyer, M. and Clarke, L. A. Data Flow Analysis frr 
Veri@ing Properties of Concurrent Programs, in ACM 
SIGSOFT ‘94: Proc. of the Second ACM Sigsoft 
Symp.on Found. of Soflw. Eng., (Dec. 1994), 62-75. 

4. Edgington, E.S. Randomization Tests. (Third Ed.) 
Dekker, 1995. 

5. Emerson, J. D., and Hoaglin, D. C.. Resistant lines 
for x versus y. In Hoaglin, D. C.; Mosteller, F.; and 
Tukey, J. W., (Eds), Understanding Robust and 
Exploratory Data Analysis. Wiley. 129-l 65, 1983. 

6. Engels, Robert, Guido Lindner, and Rudi Studer. A 
guided tour through the data mining jungle, in Proc. aE 
the Third Intl. Conf. on Knowledge Discovery and 
Data Mining (1997), 163-166. 

7. Fayyad, Usama, Gregory Piatetsky-Shapiro, and 
Padhraic Smyth. From data mining to knowledge 
discovery in databases. AI Magazine. (Fall 1996), 37- 
54. 

8. Feelders, A. and W. Werkooijen. Which method 
learns the most from data? Methodological issues in 
the analysis of comparative studies, in Preliminary 
papers of the Fifth Intl. Workshop on Artificial 
Intelligence and Statistics (1995). 

9. Gaines, Brian R. Refining induction into knowledge. 
Knowledge Discovery in Data Bases, in Workshop 
Notes from the Ninth Natl. Conf. on Artificial 
Intelligence (1991). l-10. 

10. Garvey, Alan, Keith Decker, and Victor Lesser. A 
Negotiation-Based Interface between a Real-Time 
Scheduler and a Decision-Maker, in Proc. of Workshop 
on Models of Conflict Management in Cooperative 
Problem Solving (1994), AAAI. 

11. Gascuel, 0. and G. Caraux. Statistical significance in 
inductive learning, in ECA192: Proc. of the 10th 
European Conf. on Artificial Intelligence (1992). 435- 
439. 

12. Giles, C. Lee and Steve Lawrence. Presenting and 
analyzing the results of AI experiments: Data averaging 
and data snooping, in Proc. of the Fourteenth Natl. 
Conf. on Artificial Intelligence (1997), AAAI Press. 
362-367. 

13. Heimbigner, D. The ProcessWall: A Process State 
Server Approach to Process Programming in Proc. CE 
the Fifth SIGSOFT Symp. on Softw. Development 
Environments (Dec. 1992), 159- 168. 

14. Jensen, D. and Cohen, P.R. Multiple comparisons in 
induction algorithms. Machine Learning. Accepted 
1998. 

15. Jensen, D., Oates, T., and Cohen, P.R.. Building 
Simple Models: A Case Study with Decision Trees. In 
Advances in Intelligent Data Analysis: Reasoning 

145 



about Data, in Proc. of the Second Intl. Symp. IDA-97 
(1997), 21 l-222. 

16. Jensen, D. D. Unique Challenges of Managing 
Inductive Knowledge, in Working Notes of the AAAI 
1997 Spring Symp. on Artificial Intelligence in 
Knowledge Management (1997), 75-81. Also in: 
Artificial Intelligence and Knowledge Management. 
Collected Papers from the 1997 Workshop. Technical 
Report WS-97-09. AAAI Press. 25-3 1. 

17. Lemer, B.S., Osterweil, L.J., Sutton, Jr., SM., and 
Wise, A. Programming Process Coordination in 
Little-JIL, in Proc. Of the 6” European Workshop on 
Software Process Technology (1998), 127-131. 

18. Lemer, B.S., Sutton, Jr., S.M., and Osterweil, L.J. 
Enhancing Design Methods to Support Real Design 
Processes, in Proc. Of the Ninth Intl. Workshop on 
Software Specification and Design (1998). 

19. McCall, E.K., Clarke, L. A., and Osterweil, L. J. An 
Adaptable Generation Approach to Agenda 
Management, in Proc. of the Twentieth Intl. Conf. on 
Softw. Engg. (1998), 282-291. 

20. Noreen, E.W. Computer Intensive Methods fbr 
Testing Hypotheses: An Introduction. Wiley, 1989. 

2 1. St. Amant, R. and Cohen, P.R. Submitted to 
Intelligent Support for Exploratory Data Analysis, 
1997. 

22. Sutton, Jr., S.M. and Osterweil, L.J. The Design of a 
Next-Generation Process Language, in Proc. of the 
Joint 6th European Softw. Engg. Conf. and the 5th 
ACM SIGSOFT Symp. on the Foundations of Sofhv. 
Engg. (1997), Springer-Verlag, 142-158. 

23. Wagner, T., Garvey, A., and Lesser, V. Complex 
Goal Criteria and its Application in Design-to-Criteria 
Scheduling, in Proc. of the Fourteenth Natl. Conf. on 
Artificial Intelligence (1997). 

24. Weiss, S. and Kulikowski, C.A. Computer Systems 
That Learn. Morgan K.aufma.nn, 199 1. 

25. Wise, A. Little-JIL 1.0 Language Report. CMPSCI 
Technical Report 98-24. University of Massachusetts 
Amherst, Computer Science Dept., 1998. 

26. Zhong, N., Liu, C., Kakemoto, Y., and Ohsuga S. 
KDD process planning, in Proc. of the Third Intl. 
Conf. on Knowledge Discovery and Data Mining 
(1997), 291-294. 

146 


