
Exception Handling Patterns for Processes
Barbara Staudt Lerner

Mount Holyoke College
Department of Computer Science

South Hadley, MA 01075
+1 413-538-3250

blerner@mtholyoke.edu

Stefan Christov, Alexander Wise,
Leon J. Osterweil

University of Massachusetts, Amherst
Computer Science Department

Amherst, MA 01003
+1 413-545-2186

{christov, wise, ljo}@cs.umass.edu
ABSTRACT
Using exception handling patterns in process models can raise the
abstraction level of the models, facilitating both their writing and
understanding. In this paper, we identify several useful, general-
purpose exception handling patterns and demonstrate their
applicability in business process and software development
models.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – control structures, patterns.

General Terms
Languages.

Keywords
Exception handling, pattern, process modeling.

INTRODUCTION
A process model describes the activities and interactions of
multiple agents working together to complete a task. Process
models have been used in many application domains, such as
software engineering, business processing, healthcare provision,
and conflict resolution.

As processes typically involve coordination of multiple people
and machines, there are many opportunities for problems to arise.
People might be unavailable when they are needed, the actions
they take might be incorrect or inappropriate, deadlines might not
be met, or needed resources might be unavailable. In each of these
cases, an exceptional condition has arisen and appropriate action
should be taken to address that exceptional condition. As
processes grow larger and more complex, it is of increasing
importance to not only specify precisely the normal execution of
the process, but also to provide a precise definition of how
exceptional situations should be handled. Specifying exceptional
behavior requires identifying the task in which the exception
occurred, exactly what the exception is, what tasks are needed to

remedy the exception, and how to proceed once the exception has
been handled.

Process specifications that neglect addressing the above questions
carefully and precisely are incomplete and inadequate. One
approach to dealing with exceptions is to allow a process to be
modified dynamically when an exception occurs [2]. This may be
acceptable in some situations, but especially in the case of
processes used in critical situations exception handling must be
defined as precisely and completely as possible both to provide
essential guidance and to facilitate analysis of the correctness of
the exception handling.

Incomplete processes often result in misunderstanding, which in
turn can lead to errors with serious consequences. In the medical
domain, imprecise or missing specification of how a process
should deal with exceptional situations can lead different people
to handle the same situation differently, based on personal style,
level of experience, and the actions of other people [6]. Yet,
Henneman et. al. [15] observe that descriptions of medical
processes often capture only the standard process and leave out
the handling of exceptions. This results in inconsistent handling
of exceptions, which creates the potential for errors due to
misunderstanding. It also makes it impossible to analyze whether
or not the handling of exceptions preserves process properties that
are required and desirable.

Exception handling support within an appropriately articulate
process language facilitates the desired clear separation of
exceptional behaviors from more normal behaviors and can serve
as a vehicle to keep large and complex process definitions under
intellectual control. Indeed, our experience suggests that support
for the explicit specification and handling of exceptions in
application programming languages such as Java makes programs
written in these languages clearer and more amenable to effective
intellectual control. Osterweil [18] suggests that this is no less
important in a process model and process language than in
application software and programming languages.

Through our experience in defining processes in a variety of
domains, we have realized that certain behaviors recur frequently
and thus seem to comprise specifiable patterns. The identification
and the subsequent use of such patterns has facilitated writing and
reasoning about processes that employ these patterns. Some of
these patterns deal specifically with exceptions and their handling.
We believe that recognition of exception handling patterns and
use of standard idioms to encode them can lead to improved
readability and understandability of process definitions.

In this paper, we briefly introduce patterns that specify
particularly effective use of exception handling. As in the field of
design patterns, we have found that thinking in terms of patterns

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WEH '08, November 14, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-60558-229-0 ...$5.00.

helps to raise the level of abstraction associated with process
definitions, making it easier both to create and to understand
processes using them.

The exception handling patterns we have observed seem to be
used to meet the following broad needs:

• Presenting alternative means to perform the same task.
• Inserting additional tasks before returning to normal

processing.
• Aborting the current processing.
In the remainder of this paper, we first describe the exception
handling mechanism of the Little-JIL process language and then
discuss the exception handling patterns that we have found, using
Little-JIL to elucidate the discussion and present examples. We
chose to use Little-JIL mainly because its powerful support for
specifying exception handling seems to reduce the size and
complexity of the patterns we will present, thereby enabling us to
focus more sharply on the nature of the patterns themselves. A
more complete catalog of exception handling patterns, including
more examples written both in Little-JIL and as UML 2 Activity
Diagrams, can be found online at http://www.mtholyoke.edu/
~blerner/process/patterns/ExceptionHandling/.

2. LITTLE-JIL
Little-JIL [20] is a hierarchically-scoped process language with a
graphical syntax, semantics that are precisely defined by finite
state machines [16], and a runtime environment that allows
execution on a distributed platform [21]. The basic unit of Little-
JIL processes is the step, represented graphically by an iconic
black bar as is shown in Figure 1. It is useful and reasonable to
think of a Little-JIL step as a procedure. Thus, in particular, a
step declares a scope and includes an interface, represented by the
circle at the top of the figure, which specifies the artifacts that are
required and produced by the step. These artifacts are the
arguments to the step, and the resources needed in order to
support step execution. Pre- and post-requisites, represented by
the triangles to the left
and right sides of the
step name, may be
used to specify,
respectively, processes
that are responsible for
checking that the step
can be performed, and
that the step was
performed correctly.

2.1.Substeps
Little-JIL substep decomposition is represented by having substep
icons connected to the left side of the parent step icon by edges.
The edges are annotated with specifications of the artifacts that
are passed as parameters between the parent and child steps.
Edges may also carry annotations specifying that the child step
may be instantiated more than once, as defined by a logical
expression, a Kleene * or +, or by an integer or integer range.
Each parent step specifies the execution order of its substeps using
one of the four sequencing icons, shown in Figure 2, which
appears in the step bar above the point where the substep edges
are attached. There are four different sequencing icons:
sequential, which indicates that the substeps are executed in order
from left to right; parallel, which indicates that the substeps can

be executed in any (possibly
interleaved) order; choice, which
allows any one of the substeps to be
executed; and try, which indicates
that the substeps are executed left to
right until one succeeds. The choice
and try sequencers both offer an
opportunity for the process modeler
to represent that there may be
multiple ways of accomplishing an
activity. The key difference is that in
the case of the choice sequencer, all of the alternatives are
presented to the process performer, often a human, who can
decide which of the choice substeps to perform. In contrast, the
try sequencer defines an order in which the alternatives should be
attempted. These two sequencers play key roles in the two
patterns presented in detail in Section 3.1.

2.2.Exception Handling Mechanisms
A parent step may offer exception handling facilities to its
descendant steps. These facilities are defined by exception
handlers connected to the parent by edges attached to the right
side of the parent’s step bar immediately below an ‘X’. Each
exception edge is annotated to identify the type of exception that
it handles. Exception handling in Little-JIL is divided into three
parts: signaling that an exceptional condition has occurred,
determining what steps are invoked to handle the exceptional
condition and then executing those steps, and finally determining
how the process should proceed after the specified steps have
been completed.

Copying programming languages such as Java, a Little-JIL step
signals an exceptional condition by throwing an exception object.
Unlike such languages however, Little-JIL steps are guarded by
pre- and post-requisites, which function much like assert
statements, and signal their failure by throwing exceptions as
well. Similar to pre- and post-conditions in some traditional
programming languages, the bundling of a step together with its
requisites creates a scope that cleanly separates the task from its
checking, but ensures that the step can only be called in the proper
context, and specifies the guarantees that the step can make to its
callers. As in a traditional programming language, once an
exception has been thrown, Little-JIL determines how the
exception should be handled by searching up the stack of invoking
ancestor steps. Once a handler for the exception has been located
and executed, the process specification is consulted to determine
how execution should proceed. Unlike most contemporary
languages, which generally only permit the handling scope to
complete successfully, or throw an exception, Little-JIL offers
four different exception continuations, shown in Figure 3:

• Completion, represented by
a “check mark” icon on the
edge connecting the handler
to its parent step, corresponds
to the usual semantics from
traditional programming
languages. The step to which
the exception handler is
attached is finished, and
execution continues as
specified by its parent.

• Continuation, represented

Figure 1: Little-JIL Syntax

Sequential

Parallel

Choice

Try

Figure 2: Little-JIL
Sequencing Icons

Completion

Continuation

Restart

Rethrow

Figure 3: Little-JIL
Exception Continuation

Icons

by a right arrow icon, indicates that the step to which the
exception handler is attached should proceed with its execution
as though the substep that threw the exception had succeeded.
It is important to note that this is not resumption – if several
levels of scopes had to be searched before finding a matching
handler, those scopes have still been exited.

• Restart, represented by a backwards pointing arrow, restarts
the step to which the handler is attached.

• Rethrow, represented by an up-arrow, allows the handler to
propagate the triggering exception up to an enclosing scope as
in a usual programming language.

The continuation icon is placed on the edge connecting the
exception handler to its parent. In case the exception handler has
no steps associated with it, the continuation icon is embedded in a
circle at the end of the continuation handler’s edge (as in Figure
1).

Exception handling mechanisms have been present in
programming languages for many years, going back at least as far
as to CLU [17] and early work on exception handling mechanisms
by Goodenough [12] and Yemini [22]. The focus of this paper is
not on Little-JIL’s exception handling mechanisms, but rather on
frequently observed higher-level exception handling patterns that
can be cleanly specified by utilizing such mechanisms.

3. EXCEPTION HANDLING PATTERNS
In software engineering, patterns are best known in the context of
object-oriented design. Object-oriented design patterns [10]
present interesting ways to combine classes and define methods to
address common design problems, allowing designers to reuse
high-level solutions to problems rather than reinventing solutions
for each new design problem. Similarly, we have found that there
are interesting ways to define higher-level exception handling
patterns that address common exception handling problems.
These patterns arise through particular combinations of the
location where an exception is thrown, where the exception is
caught, and where control flows after the exception is caught.
Thus, it is not just the exception handling mechanism that is of
interest, but how that mechanism is used within the context of
reaching a particular process objective. The end result is to allow
process designers to think in terms of these patterns and to be able
to recognize when these patterns are useful within a process. By
reusing a pattern, the process designer is relieved of the burden of
designing every detail of every process from first principles and
can instead use the patterns to guide the designer in the
appropriate use of the mechanisms offered by the language.
In this section we briefly introduce the exception handling
patterns that we have identified, providing more detail on two of
the patterns to give a better understanding of the work. Following
the style introduced in the classic Design Patterns book [10], we
present our patterns as a catalog. For each pattern, we provide:

• Its name
• Its intent – what recurring behavior the pattern captures
• Its applicability – in what situations the pattern should be

used
• Its structure – the general structure of the pattern expressed

in Little-JIL
• One or more examples of process fragments that use the

pattern

We organize the patterns into a set of categories. We describe the
nature of each category, and then present the specific patterns that
it contains. Our examples are drawn from different domains to
suggest the generality of the patterns.

3.1.Trying Other Alternatives
One common category of exception handling patterns describes
how to deal with decisions about which of several alternative
courses of action to pursue. In some cases, such decisions are
based upon conditions that can be encoded directly in the process,
essentially using an if-statement to make the choice. In other
cases, however, it may be difficult to capture a priori all
conditions for which each course of action is best suited. In those
cases, it is often most effective to just present the process
performer with alternatives to try. If the alternative that is tried
fails, another alternative is to be tried in its place.

In such cases it is often desirable to simply enumerate a set of
alternatives without specifying completely the exact conditions
under which each alternative is to be taken, but rather using
exception handling to move on to untried alternatives. In this
category we have identified two different exception handling
patterns: ordered alternatives and unordered alternatives

3.1.1 Pattern Name: Ordered Alternatives
Intent: There are multiple ways to accomplish a task and there is
a fixed order in which the alternatives should be tried.

Applicability: This pattern is applicable when there is a preferred
order among the alternatives that should be tried in order to
execute a task.

Structure: The Little-JIL diagram in Figure 4 depicts the
structure of the Ordered Alternatives pattern. The alternatives are
tried in order from left to right. If an alternative succeeds, the task
is completed and no more alternatives are offered. If execution of
an alternative throws an exception, it is handled by trying another
alternative. This continues until one of the alternatives succeeds.

Sample Code and Usage: Figure 5 shows the use of the Ordered
Alternatives pattern in planning travel to attend a conference.
This pattern can be seen in the Book hotel step. Here, the process
requires first trying to get a reservation at the conference hotel
before considering other hotels. If the conference hotel is full, the
HotelFull exception is thrown. This is handled by causing the
Book other hotel step to be attempted next.

Figure 4: Structure of the Ordered Alternatives Pattern

3.1.2 Pattern Name: Unordered Alternatives
Intent: There may be multiple ways of accomplishing a task and
there is no fixed order in which the alternatives should be tried. If
an exception occurs while trying one way, an alternative is to be
tried instead.

Applicability: This pattern applies when there are multiple ways
to accomplish a task and it is not known a priori which is most
appropriate. In this case, process performers decide which steps
to attempt in which order. If an attempted step fails, there is
another attempt to complete the task by choosing a different step.

Structure: The Little-JIL diagram shown in Figure 6 indicates the
structure of this pattern. In this case, there are two alternatives to
choose from. One is chosen to execute and if it is successful, the
task is complete. If it is not successful, then an exception is

thrown and the alternative is considered.
Sample Code and Usage: Figure 7 shows the shipping task in an
order management process. Here, the shipper chooses a delivery
method by selecting either the Ship with UPS or the Ship with
Federal Express step. If the chosen shipper does not provide the
necessary service for this package, an exception is thrown. The
exception handler might make a note about which shipper failed
and then retry the alternatives with this knowledge.

Combining the Ordered Alternatives and Unordered
Alternatives Patterns. Figure 8 depicts examples of both the
Unordered Alternatives and the Ordered Alternatives patterns in
defining the highest level of a process for developing software. In
this example, a software company’s policy may be to always try
to reuse existing code, if possible, in order to reduce development
costs. However, if the reuse of existing code modules is

impossible under the given circumstances, then it is necessary to
do a custom implementation. These alternatives are represented
by the use of the Ordered Alternative pattern in defining the
Implement activity in Figure 8 where the developers attempt to
employ a reuse approach prior to doing a custom implementation.

There are several possible approaches in trying to reuse existing
code. Some examples are employing inheritance, using

delegation, and instantiating a parameterized class. Knowing
which alternative to try first might be left to the judgment of the
developers. Figure 8 expresses these alternatives by using the
Unordered Alternatives pattern in defining the Reuse existing
modules activity. If the developer’s first choice does not work
out, this pattern specifies that the developer can then choose one
of the remaining alternatives.

3.2.Inserting Behavior
Because of space limitations we only sketch out the intent of each
of the remaining patterns,. Further details can be found at
http://www.mtholyoke.edu/~blerner/process/patterns/ExceptionHa
ndling/.

Another commonly occurring process behavior is inserting
additional actions that are needed in order to fix problems that
have been identified during execution of some task. Two patterns
describe common approaches to doing this.

Figure 5: Using the Ordered Alternative Pattern to Select a

Hotel

Figure 4: Using the Ordered Alternative Pattern to Select a
Hotel

Figure 6: Structure of the Unordered Alternatives Pattern

Figure 7: Use of the Unordered Alternatives Pattern to Ship
an Order

Figure 8: An Implementation Process Combining the
Ordered Alternatives and Unordered Alternatives Patterns

3.2.1 Pattern Name: Immediate Fixing
Intent: When an exception occurs, some action is taken to fix the
problem that caused the exception before continuing with the
remainder of the process.

Applicability: This pattern allows the insertion of extra behavior
to handle expected, but unusual, situations. It is useful in
situations where an expected problem is likely to occur, where a
simple procedure exists to fix the problem, and once fixed, the
process can continue as if the problem had not been encountered.

Example: In software development, if an error occurs during
compilation the error is immediately fixed before coding
continues.

3.2.2 Pattern Name: Deferred Fixing
Intent: When an exception occurs, action must be taken to record
the error and possibly provide partial fixing. Full fixing is either
not possible or not necessary immediately. Later in the process,
an additional action needs to be executed to complete the recovery
from the condition that resulted in throwing the exception.

Applicability: This pattern is useful in allowing the insertion of
additional behavior to prevent process execution from coming to a
halt. The pattern specifies partial handling of situations that are
unusual, yet predictable. This is useful in situations where
complete fixing of the exceptional condition is not immediately
possible or not desirable (for example, because it would be too
time consuming or disruptive).

Example: When a failure occurs during execution of a test
program, the bug is not fixed immediately, but rather a notation is
made in a test case log so that the bug can be fixed later. After all
testing is complete, the test case log is reviewed and the code is
fixed at that time.

3.2.3 Related Pattern: Rework
While the fixes that can be inserted in response to an exception
are as varied as the steps and the exceptions themselves, many
fixes entail the need to go back and revisit the results of some
earlier step. Cass et al. [5] argued that doing so constitutes what is
commonly known as rework, which can itself be modeled as a
pattern entailing re-invocation of a step, but in a different context.
This characterization permits use of the above patterns to define
rework as a pattern involving response to an exception.

Example: Many phases of software engineering benefit from the
Rework pattern. If during requirements definition, the creation of
a requirements element creates an incompatibility with a
requirements element that had been created previously, it then
becomes necessary to rework the previously generated
requirements, but now benefiting from knowledge of all of the
requirements elements created up to this point (notably the
requirements element whose recent creation resulted in the
observed incompatibility).

3.3.Canceling Behavior
A final category of exception handling patterns is one in which an
action being contemplated must not be allowed for some reason.

3.3.1 Pattern Name: Reject
Intent: It sometimes becomes apparent that an action being
contemplated should not be allowed. The agent contemplating the

action must be notified, and allowed to make adjustments or
changes and try again, if so desired.

Applicability: This pattern creates an entry barrier to a part of a
process.

Example: Many processes have conditions to be satisfied if a
portion or the entirety of the process is to continue. For example,
an order is rejected if either the customer has bad credit or the
supplier cannot fill the order.

4. RELATED WORK
Exceptional situations commonly arise during the execution of
processes. In recognition of this, many process and workflow
languages include constructs to allow for the definition of
exception handlers (for example, Little-JIL [20], WIDE [4],
OPERA [13]). While researchers continue to study how best to
provide exception handling mechanisms within process
languages, exception handling has become more mainstream with
its inclusion in languages like WS-BPEL [1], BPEL4WS [8] and
products like IBM’s WebSphere [9].

Hagen and Alonso [14] identify workflow tasks as being retriable,
compensatable, both or neither. In their model, exception
handlers may undo the actions of compensatable tasks and attempt
retriable tasks, perhaps in a different fashion. Our Ordered
Alternatives, Unordered Alternatives and Rework patterns are
three patterns of exception handling that capture the notion of
retrying tasks. In contrast, the Immediate and Deferred Fixing
Patterns primarily compensate for failed tasks. We find the
distinction to not be entirely clear, however, as retrying a task
may also require compensating for the alternatives already
attempted, while fixing a problem caused by a task may also
involve performing the original task in an alternative fashion that
is only appropriate in the exception handling context.
Golani and Gal [11] express concepts that are similar to
compensation and retry as rollback and stepping forward. In their
model, an exception handler is expected to perform first its
rollback tasks and then its stepping forward tasks, although they
do note that either or both may be empty. Our work focuses
more on the composition of the exception handling tasks with the
normal process tasks to identify higher-level patterns. Within the
exception handlers themselves, we expect there to be tasks
involved in rollback and stepping forward, although our patterns
do not delineate the responsibilities of the exception handling
tasks in this way.
In more closely related work, Russell, van der Aalst and ter
Hofstede [19] have begun to investigate the occurrence of patterns
within workflow. They categorize patterns in four workflow
definition semantic domains: control flow, data flow, resources,
and exception handling. They approach exception handling
patterns by identifying four dimensions associated with exception
handling mechanisms: the nature of the exception, if and how the
work item that encounters the exception continues, whether other
work items are cancelled as a result of the exception, and whether
there is any rollback or compensation performed. Based on this
analysis, they consider combinations arising from these four
dimensions to derive a universe of possible patterns in a bottom-
up fashion, without regard to whether these combinations are
commonly used in practice and without providing a description of
the workflow problems that the pattern might be suitable for
addressing. Thus, it is still left to the workflow designer to
understand the mechanisms at their most basic level. Identifying

those combinations may be useful as a benchmark to determine
the exception handling capabilities of a process language. At the
same time, these combinations do little to aid process designers in
identifying and reusing existing high-level solutions since no
general higher-level purpose for a particular combination is
provided to guide the designer in choosing a pattern to use. The
patterns (combinations) that Russell et. al. identify even lack
names that might suggest their usefulness. Instead, they name
them based on acronyms derived from the attributes they take on
in the four dimensions. For example, they identify 30 patterns
associated with expired deadlines alone, two of which are called
OCO-CWC-NIL and ORO-CWC-NIL.
Our approach differs from the approach of van der Aalst et al. in
that it is driven by recognition of patterns that we have seen occur
in processes from multiple domains. We thus approach the
identification of patterns in a top-down manner, analyzing uses of
exception handling to generalize and extract patterns that we
believe to be useful beyond the specific processes in which we
have found them.

The concept of process patterns has been explored by Coplien [7]
and later by Ambler [3]. However, these patterns differ from our
approach in that they focus on the domain of software
development. In contrast, our patterns can be applied in many
process domains, as the examples in this paper have shown.
Further, in our work, we treat processes as software, expressible
in well-defined process languages. As a result, our patterns are
concerned with how to express recurring behaviors in process
languages. The patterns presented by Coplien and Ambler
describe the activities within a particular software development
activity, like software release, but don't provide a guidance how to
express those activities in process languages.

5. CONCLUSIONS AND FUTURE WORK
We have found the exception handling patterns described here to
be useful in raising the abstraction level of process models. They
provide a way of approaching exception handling by providing a
framework of questions we can ask. Can we fix the problem
immediately? Is there another alternative the process should offer?
Should we reject this input entirely?

Just as there are many uses of classes that do not play roles in
patterns, we expect there are needs for exception handling that
cannot be met by any of the patterns we define here. Thus, in this
work we do not consider all legal ways of combining exception
handling mechanisms. Rather we have focused on combinations
that we have encountered frequently in our work in defining
processes in such diverse domains as software engineering,
business, negotiation, and healthcare. While we believe that the
diversity of these domains confirms our claim that the patterns are
general purpose in nature, we certainly do not believe that this
catalog is complete and expect it will grow over time.

We are investigating the role of a process language in expressing
exception handling patterns. We have found that exception
handling constructs of Little-JIL are particularly good at
succinctly capturing some of the patterns presented here, like the
Ordered and Unordered Alternatives. We continue to examine
other languages to identify the exception handling patterns at
which they excel and also to consider new language constructs to
facilitate the expression of exception handling patterns.

We are also interested in investigating the exception handling
patterns that have arisen in programming languages. Java, in
particular, has an active community identifying both useful
patterns and anti-patterns. It is possible that some of these
general-purpose exception handling patterns have useful analogies
in the context of process programming. We are also interested in
investigating how well fault tolerance techniques might work in
the context of process modeling.

ACKNOWLEDGMENTS
The authors wish to express their gratitude to numerous
individuals who have contributed examples and insights
supporting the points made in this paper. In particular, we wish to
thank Lori A. Clarke, George Avrunin, Beth Henneman, Phil
Henneman, Reda Bendraou, Ethan Katsh, Dan Rainey, Norm
Sondheimer, Mohammed S. Raunak, Rachel Cobleigh, Bin Chen,
and Matt Marzilli for conversations, examples, and constructive
comments all of which have contributed to this work.

This material is based upon work supported by the US National
Science Foundation under Award Nos. CCR-0427071, CCR-
0204321 and CCR-0205575. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of The National
Science Foundation, or the U.S. Government.

REFERENCES
[1] Web Services Business Process Execution Language

Version 2.0 Primer. 2007. http://docs.oasis-
open.org/wsbpel/2.0/Primer/wsbpel-v2.0-Primer.pdf

[2] Adams, M., ter Hofstede, A.H.M., Edmond, D. and van der
Aalst, W.M.P. 2007. Dynamic and Extensible Exception
Handling for Workflows: A Service-Oriented
Implementation. BPM Center Report

[3] Ambler, S.W. Process Patterns: Building Large-Scale
Systems Using Object Technology. Cambridge University
Press, 1998.

[4] Casati, F., Ceri, S., Paraboschi, S. and Pozzi, G. 1999.
Specification and Implementaiton of Exceptions in
Workflow Management Systems. ACM Transactions on
Database Systems.

[5] Cass, A.G., Sutton, S.M. and Osterweil, L.J., 2003.
Formalizing Rework in Software Processes. in Ninth
European Workshop on Software Process Technology,
(Helsinki, Finland, 2003), Springer-Verlag, 16-31.

[6] Christov, S.C., B. Avrunin, G.S., Chen, B., Clarke, L. A.,
Osterweil, L.J., Brown, D., Cassells, L., Mertens, W. 2007.
Rigorously Defining and Analyzing Medical Processes: An
Experience Report. LNCS Volume on Models in Software
Engineering, Workshops and Symposia at MoDELS 2007,
Reports and Revised Selected Papers (to appear).

[7] Coplien, J.O., 1994. A Development Process Generative
Pattern Language. in Pattern Languages of Programs,
(Monticello, Il., 1994).

[8] Curbera, F., Khalaf, R., Leymann, F. and Weerawarana, S.,
2003. Exception Handling in the BPEL4WS Language. in
Conference on Business Process Management, (2003).

[9] Fong, P. and Brent, J., 2007. Exception Handling in
WebSphere Process Server and WebSphere Enterprise
Service Bus.

http://www.ibm.com/developerworks/websphere/library/tec
harticles/0705_fong/0705_fong.html

[10] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.M.
Design Pattenrs: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[11] Golani, M. and Gal, A., 2005. Flexible Business Process
Management Using Forward Stepping and Alternative
Paths. in Business Process Modeling, (2005), Lecture Notes
in Computer Science, 48-63.

[12] Goodenough, J.B. 1975. Exception Handling: Issues and a
Proposed Notation. Communications of the ACM, 18 (12).
683–696.

[13] Hagen, C. and Alonso, G. 2000. Exception Handling in
Workflow Management Systems. IEEE Transaction on
Software Engineering, 26 (10). 943-958.

[14] Hagen, C. and Alonso, G. October 2000. Exception
Handling in Workflow Management Systems. IEEE
Transaction on Software Engineering, 26 (10). 943-958.

[15] Henneman, E.H., Cobleigh, R.L., Frederick, K., Katz-
Bassett, E., Avrunin, G.A., Clarke, L.A., Osterweil, L.J.,
Andrzejewski, C., Merrigan, K. and Henneman, P.L. 2007.
Increasing Patient Safety and Efficiency in Transfusion
Therapy using Formal Process Definitions. Transfusion
Medicine Reviews, 21 (1). 49-57.

[16] Lerner, B.S. Verifying Process Models Built Using
Parameterized State Machines. Rothermel, G. ed. ACM
SIGSOFT International Symposium on Software Testing
and Analysis, Boston, MA, 2004, 274-284.

[17] Liskov, B.H. and Snyder, A. 1979. Exception Handling in
CLU. IEEE Transactions on Software Engineering, SE-5
(6). 546–558.

[18] Osterweil, L.J., 1987. Software Processes are Software, Too.
in Ninth International Conference on Software Engineering,
(Monterey, CA, 1987), IEEE Computer Society Press, 2-13.

[19] Russell, N., van der Aalst, W.M.P. and ter Hofstede, A.H.M.
2006. Exception Handling Patterns in Process-Aware
Information Systems.

[20] Wise, A. 2006. Little-JIL 1.5 Language Report. Department
of Computer Science, University of Massachusetts,
Amherst, MA 01003

[21] Wise, A., Aaron, C.G., Lerner, B.S., McCall, E., J., O. and
Sutton, S.M., 2000. Using Little-JIL to Coordinate Agents
in Software Engineering. in 15th International Conference
on Automated Software Engineering, (Grenoble, France,
2000), IEEE Computer Society 155-163.

[22] Yemini, S. and Berry, D.M. 1985. A modular verifiable
exception handling mechanism. ACM Trans. Program.
Lang. Syst., 7 (2). 214-243.

